Displaying publications 1 - 20 of 97 in total

Abstract:
Sort:
  1. Nik Mohamed Kamal NNS, Abdul Aziz FA, Tan WN, Fauzi AN, Lim V
    Molecules, 2021 Jun 09;26(12).
    PMID: 34207699 DOI: 10.3390/molecules26123518
    Pancreatic cancer is an aggressive disease that progresses in a relatively symptom-free manner; thus, is difficult to detect and treat. Essential oil is reported to exhibit pharmacological properties, besides its common and well-known function as aromatherapy. Therefore, this study herein aimed to investigate the anti-proliferative effect of essential oil extracted from leaves of Garcinia atroviridis (EO-L) against PANC-1 human pancreatic cancer cell line. The cell growth inhibitory concentration at 50% (IC50) and selective index (SI) values of EO-L analyses were determined as 78 µg/mL and 1.23, respectively. Combination index (CI) analysis revealed moderate synergism (CI values of 0.36 to 0.75) between EO-L and 2 deoxy-d-glucose (2-DG) treatments. The treatments of PANC-1 cells with EO-L, 2-DG and EOL+2DG showed evidence of depolarization of mitochondrial membrane potential, cell growth arrest and apoptosis. The molecular mechanism causing the anti-proliferative effect between EO-L and 2-DG is potentially through pronounced up-regulation of P53 (4.40-fold), HIF1α (1.92-fold), HK2 (2.88-fold) and down-regulation of CYP3A5 (0.11-fold), as supported by quantitative mRNA expression analysis. Collectively, the current data suggest that the combination of two anti-proliferative agents, EO-L and 2-DG, can potentially be explored as therapeutic treatments and as potentiating agents to conventional therapy against human pancreatic cancer.
    Matched MeSH terms: Pancreatic Neoplasms/drug therapy*; Pancreatic Neoplasms/metabolism; Pancreatic Neoplasms/pathology
  2. Mocci E, Kundu P, Wheeler W, Arslan AA, Beane-Freeman LE, Bracci PM, et al.
    Cancer Res, 2021 Jun 01;81(11):3134-3143.
    PMID: 33574088 DOI: 10.1158/0008-5472.CAN-20-3267
    Germline variation and smoking are independently associated with pancreatic ductal adenocarcinoma (PDAC). We conducted genome-wide smoking interaction analysis of PDAC using genotype data from four previous genome-wide association studies in individuals of European ancestry (7,937 cases and 11,774 controls). Examination of expression quantitative trait loci data from the Genotype-Tissue Expression Project followed by colocalization analysis was conducted to determine whether there was support for common SNP(s) underlying the observed associations. Statistical tests were two sided and P < 5 × 10-8 was considered statistically significant. Genome-wide significant evidence of qualitative interaction was identified on chr2q21.3 in intron 5 of the transmembrane protein 163 (TMEM163) and upstream of the cyclin T2 (CCNT2). The most significant SNP using the Empirical Bayes method, in this region that included 45 significantly associated SNPs, was rs1818613 [per allele OR in never smokers 0.87, 95% confidence interval (CI), 0.82-0.93; former smokers 1.00, 95% CI, 0.91-1.07; current smokers 1.25, 95% CI 1.12-1.40, P interaction = 3.08 × 10-9). Examination of the Genotype-Tissue Expression Project data demonstrated an expression quantitative trait locus in this region for TMEM163 and CCNT2 in several tissue types. Colocalization analysis supported a shared SNP, rs842357, in high linkage disequilibrium with rs1818613 (r 2 = 0. 94) driving both the observed interaction and the expression quantitative trait loci signals. Future studies are needed to confirm and understand the differential biologic mechanisms by smoking status that contribute to our PDAC findings. SIGNIFICANCE: This large genome-wide interaction study identifies a susceptibility locus on 2q21.3 that significantly modified PDAC risk by smoking status, providing insight into smoking-associated PDAC, with implications for prevention.
    Matched MeSH terms: Pancreatic Neoplasms/etiology; Pancreatic Neoplasms/metabolism; Pancreatic Neoplasms/pathology*
  3. Noman E, Al-Shaibani MM, Bakhrebah MA, Almoheer R, Al-Sahari M, Al-Gheethi A, et al.
    J Fungi (Basel), 2021 May 30;7(6).
    PMID: 34070936 DOI: 10.3390/jof7060436
    The promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells. The current review has analyed the available information on the anticancer activity of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric analysis revealed many of the properties available for the fungi to be the best candidate as a source of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi are Aspergillusniger, A.fumigatusA.oryzae, A.flavus, A. versicolor, A.terreus,Penicilliumcitrinum, P.chrysogenum, and P.polonicum and have been used for investigating the anticancer activity against the uterine cervix, pancreatic cancer, ovary, breast, colon, and colorectal cancer.
    Matched MeSH terms: Pancreatic Neoplasms
  4. Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, et al.
    Pharmaceuticals (Basel), 2021 Apr 16;14(4).
    PMID: 33923474 DOI: 10.3390/ph14040369
    To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.
    Matched MeSH terms: Pancreatic Neoplasms
  5. Hossan MS, Break MKB, Bradshaw TD, Collins HM, Wiart C, Khoo TJ, et al.
    Molecules, 2021 Apr 09;26(8).
    PMID: 33918814 DOI: 10.3390/molecules26082166
    Cardamonin is a polyphenolic natural product that has been shown to possess cytotoxic activity against a variety of cancer cell lines. We previously reported the semi-synthesis of a novel Cu (II)-cardamonin complex (19) that demonstrated potent antitumour activity. In this study, we further investigated the bioactivity of 19 against MDA-MB-468 and PANC-1 cancer cells in an attempt to discover an effective treatment for triple-negative breast cancer (TNBC) and pancreatic cancer, respectively. Results revealed that 19 abolished the formation of MDA-MB-468 and PANC-1 colonies, exerted growth-inhibitory activity, and inhibited cancer cell migration. Further mechanistic studies showed that 19 induced DNA damage resulting in gap 2 (G2)/mitosis (M) phase arrest and microtubule network disruption. Moreover, 19 generated reactive oxygen species (ROS) that may contribute to induction of apoptosis, corroborated by activation of caspase-3/7, PARP cleavage, and downregulation of Mcl-1. Complex 19 also decreased the expression levels of p-Akt and p-4EBP1, which indicates that the compound exerts its activity, at least in part, via inhibition of Akt signalling. Furthermore, 19 decreased the expression of c-Myc in PANC-1 cells only, which suggests that it may exert its bioactivity via multiple mechanisms of action. These results demonstrate the potential of 19 as a therapeutic agent for TNBC and pancreatic cancer.
    Matched MeSH terms: Pancreatic Neoplasms/pathology*
  6. Mohamed Shah FZ, Mohamad AF, Zainordin NA, Eddy Warman NA, Wan Muhamad Hatta SF, Abdul Ghani R
    Ann Med Surg (Lond), 2021 Apr;64:102240.
    PMID: 33868680 DOI: 10.1016/j.amsu.2021.102240
    Introduction: Insulinoma is a functioning pancreatic neuroendocrine tumor primarily leading due to hypoglycemia due to hypersecretion of insulin. This case illustrates the real challenges faced in the detection of an occult insulinoma, which resulted in a protracted course of the disease.

    Case presentation: A 33-year-old female presented with recurrent hypoglycemia. Endogenous hyperinsulinemia was confirmed by a prolonged fast, however serial imaging was negative. Incidental finding of an ovarian mass gave rise to the suspicion of an insulin-producing ovarian tumor. Subsequent multimodality pancreatic imaging remained negative, requiring more invasive investigations. The tumor was localized by specialized arteriography using calcium stimulation to support the diagnosis of an insulinoma. However, repeated negative imaging led to further delays in definitive management, with worsening hypoglycemia. The surgery was finally performed three years after the initial presentation with successful removal of the tumor using intra-operative ultrasound.

    Clinical discussion: It is important to emphasize that preoperative radiological imaging is useful to localize pancreatic lesions. However, most insulinomas could only be detected intraoperatively. The absence of suggestive radiological evidence should not deter surgeons from proceeding with definitive surgical intervention.

    Conclusion: The case highlights the importance of a multidisciplinary approach in the management of a complicated case.

    Matched MeSH terms: Pancreatic Neoplasms
  7. Shyam S, Greenwood D, Mai CW, Tan SS, Mohd Yusof BN, Moy FM, et al.
    Cancers (Basel), 2021 Mar 02;13(5).
    PMID: 33801191 DOI: 10.3390/cancers13051036
    (1) Background: We studied the association of both conventional (BMI, waist and hip circumference and waist-hip ratio) and novel (UK clothing sizes) obesity indices with pancreatic cancer risk in the UK women's cohort study (UKWCS). (2) Methods: The UKWCS recruited 35,792 women from England, Wales and Scotland from 1995 to 1998. Cancer diagnosis and death information were obtained from the National Health Service (NHS) Central Register. Cox's proportional hazards regression was used to evaluate the association between baseline obesity indicators and pancreatic cancer risk. (3) Results: This analysis included 35,364 participants with a median follow-up of 19.3 years. During the 654,566 person-years follow up, there were 136 incident pancreatic cancer cases. After adjustments for age, smoking, education and physical activity, each centimetre increase in hip circumference (HR: 1.03, 95% CI: 1.01-1.05, p = 0.009) and each size increase in skirt size (HR: 1.12, 95% CI: 1.02-1.23, p = 0.041) at baseline increased pancreatic cancer risk. Baseline BMI became a significant predictor of pancreatic cancer risk (HR: 1.04, 95% CI: 1.00-1.08, p = 0.050) when latent pancreatic cancer cases were removed. Only baseline hip circumference was associated with pancreatic cancer risk (HR: 1.03, 95% CI: 1.00-1.05, p = 0.017) when participants with diabetes at baseline were excluded to control for reverse causality. (4) Conclusion: Hip circumference and skirt size were significant predictors of pancreatic cancer risk in the primary analysis. Thus, hip circumference is useful to assess body shape relationships. Additionally, standard skirt sizes offer an economical and objective alternative to conventional obesity indices for evaluating pancreatic cancer risk in women.
    Matched MeSH terms: Pancreatic Neoplasms
  8. Maniam G, Mai CW, Zulkefeli M, Fu JY
    Nanomedicine (Lond), 2021 02;16(5):373-389.
    PMID: 33543651 DOI: 10.2217/nnm-2020-0374
    Aim: To synthesize niosomes co-encapsulating gemcitabine (GEM) and tocotrienols, and physicochemically characterize and evaluate the antipancreatic effects of the nanoformulation on Panc 10.05, SW 1990, AsPC-1 and BxPC-3 cells. Materials & methods: Niosomes-entrapping GEM and tocotrienols composed of Span 60, cholesterol and D-α-tocopheryl polyethylene glycol 1000 succinate were produced by Handjani-Vila and film hydration methods. Results: The film hydration produced vesicles measuring 161.9 ± 0.5 nm, approximately 50% smaller in size than Handjani-Vila method, with maximum entrapment efficiencies of 20.07 ± 0.22% for GEM and 34.52 ± 0.10% for tocotrienols. In Panc 10.05 cells, GEM's antiproliferative effect was enhanced 2.78-fold in combination with tocotrienols. Niosomes produced a significant ninefold enhancement in cytotoxicity of the combination, supported by significantly higher cellular uptake of GEM in the cells. Conclusion: This study is a proof of concept on the synthesis of dual-drug niosomes and their efficacy on pancreatic cancer cells in vitro.
    Matched MeSH terms: Pancreatic Neoplasms
  9. Naidu J, Bartholomeusz D, Zobel J, Safaeian R, Hsieh W, Crouch B, et al.
    Endoscopy, 2021 Jan 13.
    PMID: 33440437 DOI: 10.1055/a-1353-0941
    AIM: This study evaluated clinical outcomes of combined chemotherapy and Endoscopic Ultrasound (EUS) guided intra-tumoral radioactive phosphorus-32 (32P OncoSil) implantation in locally advanced pancreatic adenocarcinoma (LAPC).

    METHODS: Consecutive patients with a new histological diagnosis of LAPC were recruited over 20 months. Baseline CT and 18FDG PET-CT were performed and repeated after 12 weeks to assess response to treatment. Following 2 cycles of conventional chemotherapy, patients underwent EUS-guided 32P OncoSil implantation followed by a further six cycles of chemotherapy.

    RESULTS: Twelve patients with LAPC (8M:4F; median age 69 years, IQR 61.5-73.3) completed the treatment. Technical success was 100% and no procedural complications were reported. At 12 weeks, there was a median reduction of 8.2cm3 (95% CI 4.95-10.85; p=0.003) in tumour volume, with minimal or no 18FDG uptake in 9 (75%) patients. Tumour downstaging was achieved in 6 (50%) patients, leading to successful resection in 5 (42%) patients, of which 4 patients (80%) had clear (R0) resection margins.

    CONCLUSIONS: EUS guided 32P OncoSil implantation is feasible and well tolerated and was associated with a 42% rate of surgical resection in our cohort. However, further evaluation in a larger randomized multicenter trial is warranted. (32P funded by OncoSil Medical Ltd, equipment and staff funded by the Royal Adelaide Hospital, ClinicalTrials.gov number, NCT03003078).

    Matched MeSH terms: Pancreatic Neoplasms
  10. Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, et al.
    Int J Pharm, 2021 Jan 05;592:120043.
    PMID: 33152476 DOI: 10.1016/j.ijpharm.2020.120043
    Cancer is a community health hazard which progress at a fatal rate in various countries across the globe. An agent used for chemotherapy should exhibit ideal properties to be an effective anticancer medicine. The chemotherapeutic medicines used for treatment of various cancers are, gemcitabine, paclitaxel, etoposide, methotrexate, cisplatin, doxorubicin and 5-fluorouracil. However, many of these agents present nonspecific systemic toxicity that prevents their treatment efficiency. Of all, gemcitabine has shown to be an active agent against colon, pancreatic, colon, ovarian, breast, head and neck and lung cancers in amalgamation with various anticancer agents. Gemcitabine is considered a gold-standard and the first FDA approved agent used as a monotherapy in management of advanced pancreatic cancers. However due to its poor pharmacokinetics, there is need of newer drug delivery system for efficient action. Nanotechnology has shown to be an emerging trend in field of medicine in providing novel modalities for cancer treatment. Various nanocarriers have the potential to deliver the drug at the desired site to obtain information about diagnosis and treatment of cancer. This review highlights on various nanocarriers like polymeric nanoparticles, solid lipid nanoparticles, mesoporous silica nanoparticles, magnetic nanoparticles, micelles, liposomes, dendrimers, gold nanoparticles and combination approaches for delivery of gemcitabine for cancer therapy. The co-encapsulation and concurrent delivery of Gem with other anticancer agents can enhance drug action at the cancer site with reduced side effects.
    Matched MeSH terms: Pancreatic Neoplasms
  11. Sakharkar MK, Dhillon SK, Mazumder M, Yang J
    Genes Cancer, 2021;12:12-24.
    PMID: 33884102 DOI: 10.18632/genesandcancer.210
    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal type of cancer. In this study, we undertook a pairwise comparison of gene expression pattern between tumor tissue and its matching adjacent normal tissue for 45 PDAC patients and identified 22 upregulated and 32 downregulated genes. PPI network revealed that fibronectin 1 and serpin peptidase inhibitor B5 were the most interconnected upregulated-nodes. Virtual screening identified bleomycin exhibited reasonably strong binding to both proteins. Effect of bleomycin on cell viability was examined against two PDAC cell lines, AsPC-1 and MIA PaCa-2. AsPC-1 did not respond to bleomycin, however, MIA PaCa-2 responded to bleomycin with an IC50 of 2.6 μM. This implicates that bleomycin could be repurposed for the treatment of PDAC, especially in combination with other chemotherapy agents. In vivo mouse xenograft studies and patient clinical trials are warranted to understand the functional mechanism of bleomycin towards PDAC and optimize its therapeutic efficacy. Furthermore, we will evaluate the antitumor activity of the other identified drugs in our future studies.
    Matched MeSH terms: Pancreatic Neoplasms
  12. Ghoneim DH, Zhu J, Zheng W, Long J, Murff HJ, Ye F, et al.
    Cancer Epidemiol Biomarkers Prev, 2020 Dec;29(12):2735-2739.
    PMID: 32967863 DOI: 10.1158/1055-9965.EPI-20-0651
    BACKGROUND: Whether circulating polyunsaturated fatty acid (PUFA) levels are associated with pancreatic cancer risk is uncertain. Mendelian randomization (MR) represents a study design using genetic instruments to better characterize the relationship between exposure and outcome.

    METHODS: We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data.

    RESULTS: Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex.

    CONCLUSIONS: Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk.

    IMPACT: These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.

    Matched MeSH terms: Pancreatic Neoplasms/genetics*; Pancreatic Neoplasms/pathology
  13. Chong CCN, Lakhtakia S, Nguyen N, Hara K, Chan WK, Puri R, et al.
    Endoscopy, 2020 10;52(10):856-863.
    PMID: 32498098 DOI: 10.1055/a-1172-6027
    BACKGROUND: The use of macroscopic on-site evaluation (MOSE) to estimate the adequacy of a specimen for histological diagnosis during endoscopic ultrasound (EUS)-guided fine-needle tissue acquisition (FNTA) has recently been advocated. This study aimed to evaluate the diagnostic yield of MOSE compared with conventional EUS-FNTA without rapid on-site evaluation (ROSE).

    METHODS: This was an international, multicenter, prospective, randomized controlled study. After providing informed consent, consecutive adult patients referred for EUS-FNTA for solid lesions larger than 2 cm were randomized to a MOSE arm or to a conventional arm without ROSE. A designated cytopathologist from each center performed all cytopathological examinations for that center and was blinded to the randomization results. The primary outcome measure was the diagnostic yield, and the secondary outcomes included sensitivity, specificity, positive predictive value, negative predictive value, diagnostic accuracy, and the rate of procedure-related complications.

    RESULTS: 244 patients (122 conventional, 122 MOSE) were enrolled during the study period. No significant differences between the two arms were found in procedure time or rate of procedure-related adverse events. The diagnostic yield for the MOSE technique (92.6 %) was similar to that for the conventional technique (89.3 %; P  = 0.37), with significantly fewer passes made (median: conventional 3, MOSE 2; P  

    Matched MeSH terms: Pancreatic Neoplasms*
  14. Wong KK
    Cell Oncol (Dordr), 2020 Oct;43(5):779-792.
    PMID: 32504382 DOI: 10.1007/s13402-020-00526-4
    BACKGROUND: Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating cancer types with a 5-year survival rate of only 9%. PDAC is one of the leading causes of cancer-related deaths in both genders. Epigenetic alterations may lead to the suppression of tumor suppressor genes, and DNA methylation is a predominant epigenetic modification. DNA methyltransferase 1 (DNMT1) is required for maintaining patterns of DNA methylation during cellular replication. Accumulating evidence has implicated the oncogenic roles of DNMT1 in various malignancies including PDACs.

    CONCLUSIONS: Herein, the expression profiles, oncogenic roles, regulators and inhibitors of DNMT1 in PDACs are presented and discussed. DNMT1 is overexpressed in PDAC cases compared with non-cancerous pancreatic ducts, and its expression gradually increases from pre-neoplastic lesions to PDACs. DNMT1 plays oncogenic roles in suppressing PDAC cell differentiation and in promoting their proliferation, migration and invasion, as well as in induction of the self-renewal capacity of PDAC cancer stem cells. These effects are achieved via promoter hypermethylation of tumor suppressor genes, including cyclin-dependent kinase inhibitors (e.g., p14, p15, p16, p21 and p27), suppressors of epithelial-mesenchymal transition (e.g., E-cadherin) and tumor suppressor miRNAs (e.g., miR-148a, miR-152 and miR-17-92 cluster). Pre-clinical investigations have shown the potency of novel non-nucleoside DNMT1 inhibitors against PDAC cells. Finally, phase I/II clinical trials of DNMT1 inhibitors (azacitidine, decitabine and guadecitabine) in PDAC patients are currently underway, where these inhibitors have the potential to sensitize PDACs to chemotherapy and immune checkpoint blockade therapy.

    Matched MeSH terms: Pancreatic Neoplasms/drug therapy*; Pancreatic Neoplasms/enzymology*; Pancreatic Neoplasms/genetics; Pancreatic Neoplasms/pathology
  15. Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, et al.
    J Natl Cancer Inst, 2020 Oct 01;112(10):1003-1012.
    PMID: 31917448 DOI: 10.1093/jnci/djz246
    BACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown.

    METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).

    RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.

    CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.

    Matched MeSH terms: Pancreatic Neoplasms/genetics*
  16. Yuan F, Hung RJ, Walsh N, Zhang H, Platz EA, Wheeler W, et al.
    Cancer Res, 2020 Sep 15;80(18):4004-4013.
    PMID: 32641412 DOI: 10.1158/0008-5472.CAN-20-0447
    Registry-based epidemiologic studies suggest associations between chronic inflammatory intestinal diseases and pancreatic ductal adenocarcinoma (PDAC). As genetic susceptibility contributes to a large proportion of chronic inflammatory intestinal diseases, we hypothesize that the genomic regions surrounding established genome-wide associated variants for these chronic inflammatory diseases are associated with PDAC. We examined the association between PDAC and genomic regions (±500 kb) surrounding established common susceptibility variants for ulcerative colitis, Crohn's disease, inflammatory bowel disease, celiac disease, chronic pancreatitis, and primary sclerosing cholangitis. We analyzed summary statistics from genome-wide association studies data for 8,384 cases and 11,955 controls of European descent from two large consortium studies using the summary data-based adaptive rank truncated product method to examine the overall association of combined genomic regions for each inflammatory disease group. Combined genomic susceptibility regions for ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis were associated with PDAC at P values < 0.05 (0.0040, 0.0057, 0.011, and 3.4 × 10-6, respectively). After excluding the 20 PDAC susceptibility regions (±500 kb) previously identified by GWAS, the genomic regions for ulcerative colitis, Crohn disease, and inflammatory bowel disease remained associated with PDAC (P = 0.0029, 0.0057, and 0.0098, respectively). Genomic regions for celiac disease (P = 0.22) and primary sclerosing cholangitis (P = 0.078) were not associated with PDAC. Our results support the hypothesis that genomic regions surrounding variants associated with inflammatory intestinal diseases, particularly, ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis are associated with PDAC. SIGNIFICANCE: The joint effects of common variants in genomic regions containing susceptibility loci for inflammatory bowel disease and chronic pancreatitis are associated with PDAC and may provide insights to understanding pancreatic cancer etiology.
    Matched MeSH terms: Pancreatic Neoplasms/genetics*
  17. Guo J, Sahai AV, Teoh A, Arcidiacono PG, Larghi A, Saftoiu A, et al.
    Endosc Ultrasound, 2020 9 5;9(5):319-328.
    PMID: 32883921 DOI: 10.4103/eus.eus_56_20
    Background and Objectives: Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) and fine needle biopsy (FNB) are effective techniques that are widely used for tissue acquisition. However, it remains unclear how to obtain high-quality specimens. Therefore, we conducted a survey of EUS-FNA and FNB techniques to determine practice patterns worldwide and to develop strong recommendations based on the experience of experts in the field.

    Methods: This was a worldwide multi-institutional survey among members of the International Society of EUS Task Force (ISEUS-TF). The survey was administered by E-mail through the SurveyMonkey website. In some cases, percentage agreement with some statements was calculated; in others, the options with the greatest numbers of responses were summarized. Another questionnaire about the level of recommendation was designed to assess the respondents' answers.

    Results: ISEUS-TF members developed a questionnaire containing 17 questions that was sent to 53 experts. Thirty-five experts completed the survey within the specified period. Among them, 40% and 54.3% performed 50-200 and more than 200 EUS sampling procedures annually, respectively. Some practice patterns regarding FNA/FNB were recommended.

    Conclusion: This is the first worldwide survey of EUS-FNA and FNB practice patterns. The results showed wide variations in practice patterns. Randomized studies are urgently needed to establish the best approach for optimizing the FNA/FNB procedures.

    Matched MeSH terms: Pancreatic Neoplasms
  18. Yaw ACK, Chan EWL, Yap JKY, Mai CW
    J Cancer Res Clin Oncol, 2020 Sep;146(9):2219-2229.
    PMID: 32507974 DOI: 10.1007/s00432-020-03274-y
    PURPOSE: Pancreatic cancer is a lethal form of cancer that can be triggered by prolonged or acute inflammation of the pancreas. Inflammation have been shown to be regulated by a group of key protein molecules known as the inflammasomes. The NLRP3 inflammasome is the most studied inflammasome and have been strongly implicated to regulate cancer cell proliferation. Therefore, this study aimed to examine the regulation of NLRP3 inflammasome under LPS-induced inflammation and its role in modulating cell proliferation in a panel of pancreatic cancer cells.

    METHODS: The effects of LPS-induced NLRP3 activation in the presence or absence of MCC950, NLRP3-specific inhibitor, was tested on a panel of three pancreatic cancer cell lines (SW1990, PANC1 and Panc10.05). Western blotting, cell viability kits and ELISA kits were used to examine the effects of LPS-induced NLRP3 activation and inhibition by MCC950 on NLRP3 expression, cell viability, caspase-1 activity and cytokine IL-1β, respectively.

    RESULTS: LPS-induced inflammation in the presence of ATP activates NLRP3 that subsequently increases pancreatic cancer cell proliferation by increasing caspase-1 activity leading to overall production of IL-1β. The inhibition of the NLRP3 inflammasome activation via the specific NLRP3 antagonist MCC950 was able to reduce the cell viability of pancreatic cancer cells. However, the efficacy of MCC950 varies between cell types which is most probably due to the difference in ASC expressions which have a different role in inflammasome activation.

    CONCLUSION: There is a dynamic interaction between inflammasome that regulates inflammasome-mediated inflammation in pancreatic adenocarcinoma cells.

    Matched MeSH terms: Pancreatic Neoplasms/chemically induced; Pancreatic Neoplasms/drug therapy*; Pancreatic Neoplasms/metabolism
  19. Sivaramakarthikeyan R, Iniyaval S, Saravanan V, Lim WM, Mai CW, Ramalingan C
    ACS Omega, 2020 May 05;5(17):10089-10098.
    PMID: 32391496 DOI: 10.1021/acsomega.0c00630
    Synthesis of a series of benzimidazole-ornamented pyrazoles, 6a-6j has been obtained from arylhydrazine and aralkyl ketones via a multistep synthetic strategy. Among them, a hybrid-possessing para-nitrophenyl moiety connected to a pyrazole scaffold (6a) exerted the highest anti-inflammatory activity, which is superior to the standard, diclofenac sodium. While executing the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, a hybrid-possessing para-bromophenyl unit integrated at the pyrazole structural motif (6i) exhibited the highest activity among the hybrids examined. Besides, evaluation of anticancer potency of the synthesized hybrids revealed that the one containing a para-fluorophenyl unit tethered at the pyrazole nucleus (6h) showed the highest activity against both the pancreatic cancer cells (SW1990 and AsPCl) investigated. Considerable binding affinity between B-cell lymphoma and the hybrid, 6h has been reflected while performing molecular docking studies (-8.65 kcal/mol). The outcomes of the investigation expose that these hybrids could be used as effective intermediates to construct more potent biological agents.
    Matched MeSH terms: Pancreatic Neoplasms
  20. Adebayo IA, Arsad H, Gagman HA, Ismail NZ, Samian MR
    Asian Pac J Cancer Prev, 2020 May 01;21(5):1247-1252.
    PMID: 32458629 DOI: 10.31557/APJCP.2020.21.5.1247
    BACKGROUND: Recently, nanoparticle synthesis by eco-friendly methods has received tremendous attention due to the method advantages and also because of the application of the nanoparticles in cancer research. Therefore, in this study, we synthesized silver nanoparticles from Detarium microcarpum leaf phytochemicals and evaluated its inhibitory effect on pancreatic and cervical cancer cells.

    MATERIALS AND METHODS: Silver nanoparticles (dAgNps) were synthesized by reacting phytochemicals of D. microcarpum leaves with silver nitrate for 12 hours. Cell viability assay was carried out to investigate the cytotoxic effect of dAgNps on HeLa and PANC-1 cells.

    RESULTS: Scanning electron microscopy (SEM) and transmission electron microscopy(TEM) results revealed the average sizes of dAgNps are 81 nm and 84 nm respectively. The x-ray diffraction (XRD) pattern of dAgNps was similar to that of face centered cubic(fcc) structure of silver as reported by joint committee on powder diffraction standards (JCPDS) and fourier-transform infrared spectroscopy (FTIR) analysis showed that some phytochemicals of D. microcarpum such as polyphenols and flavonoids were likely involved in the reduction of Ag+ to form nanoparticles. Finally, cell viability assay revealed dAgNps inhibited PANC-1 and HeLa cell proliferations with IC50 values of 84 and 31.5 µg/ml respectively.

    CONCLUSION: In conclusion, the synthesized nanoparticles from D. microcarpum leaves (dAgNps) have inhibitory effect on pancreatic and cervical cancer cells.

    Matched MeSH terms: Pancreatic Neoplasms/drug therapy*; Pancreatic Neoplasms/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links