Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, et al.
    Emerg Infect Dis, 2001 May-Jun;7(3):439-41.
    PMID: 11384522
    Nipah virus, family Paramyxoviridae, caused disease in pigs and humans in peninsular Malaysia in 1998-99. Because Nipah virus appears closely related to Hendra virus, wildlife surveillance focused primarily on pteropid bats (suborder Megachiroptera), a natural host of Hendra virus in Australia. We collected 324 bats from 14 species on peninsular Malaysia. Neutralizing antibodies to Nipah virus were demonstrated in five species, suggesting widespread infection in bat populations in peninsular Malaysia.
    Matched MeSH terms: Paramyxovirinae/isolation & purification*
  2. Yaiw KC, Crameri G, Wang L, Chong HT, Chua KB, Tan CT, et al.
    J Infect Dis, 2007 Sep 15;196(6):884-6.
    PMID: 17703419
    Tioman virus, a relatively new paramyxovirus, was isolated from fruit bats (Pteropus species) on Tioman Island, Malaysia, in 2001. The objective of this study was to determine the prevalence of antibodies to T. virus in island inhabitants, by use of comparative ELISA and serum neutralization assays. Of the 169 human sera analyzed, 5 (approximately 3.0%) were positive for T. virus, by comparative ELISA. Of these 5 sera, 3 (1.8% of the total) had neutralizing antibodies against T. virus, suggesting previous infection of this study population by this virus or a similar virus.
    Matched MeSH terms: Paramyxovirinae/immunology*
  3. Wong SC, Ooi MH, Wong MN, Tio PH, Solomon T, Cardosa MJ
    J Neurol Neurosurg Psychiatry, 2001 Oct;71(4):552-4.
    PMID: 11561048
    Nipah virus is a newly discovered paramyxovirus transmitted directly from pigs to humans. During a large encephalitis outbreak in Malaysia and Singapore in 1998-9, most patients presented acutely. A 12 year old child is described who developed encephalitis 4 months after exposure to the virus. She was diagnosed by a new indirect IgG enzyme linked immunosorbent assay (ELISA), which is also described. The late presentation and IgG subclass responses had similarities to subacute sclerosing panencephalitis. Nipah virus should be considered in patients with encephalitis even months after their possible exposure.
    Matched MeSH terms: Paramyxovirinae/immunology*
  4. Wong KT
    Neuropathol. Appl. Neurobiol., 2000 Aug;26(4):313-8.
    PMID: 10931364
    Two major epidemics of viral encephalitis occurred in Asia in 1997 and 1998. The first was a re-emergence of neurovirulent strains of enterovirus 71, which caused severe encephalomyelitis in children in Malaysia, Taiwan and Japan, on a background of hand, foot and mouth disease. Necropsy studies of patients who died of enterovirus 71 infection showed severe perivascular cuffing, parenchymal inflammation and neuronophagia in the spinal cord, brainstem and diencephalon, and in focal areas in the cerebellum and cerebrum. Although no viral inclusions were detected, immunohistochemistry showed viral antigen in the neuronal cytoplasm. Inflammation was often more extensive than neuronal infection, suggesting that other factors, in addition to direct viral cytolysis, may be involved in tissue damage. The second epidemic of viral encephalitis was the result of a novel paramyxovirus called Nipah, which mainly involved pig handlers in Malaysia and Singapore. Pathological evidence suggested that the endothelium of small blood vessels in the central nervous system was particularly susceptible to infection. This led to disseminated endothelial damage and syncytium formation, vasculitis, thrombosis, ischaemia and microinfarction. However, there was also evidence of neuronal infection by the virus and this may also have contributed to the neurological dysfunction in Nipah encephalitis. Some patients who seemed to recover from the acute symptoms have been re-admitted with clinical findings suggestive of relapsing encephalitis. As these two epidemics indicate, the emergence and re-emergence of viral encephalitides continue to pose considerable challenges to the neuropathologist, in establishing the diagnosis and unravelling the pathogenesis of the neurological disease.
    Matched MeSH terms: Paramyxovirinae/isolation & purification; Paramyxovirinae/pathogenicity
  5. Wong KT, Shieh WJ, Zaki SR, Tan CT
    Springer Semin. Immunopathol., 2002;24(2):215-28.
    PMID: 12503066
    The Nipah virus outbreak represented one of several bat-derived paramyxoviruses that has emerged during the last decade to cause severe human and animal disease. The pathogenesis of Nipah infection is associated with its ability to infect blood vessels and extravascular parenchyma in many organs, particularly in the central nervous system. The clinical manifestations of acute Nipah infection range from fever and mild headache to a severe acute encephalitic syndrome in which there is a high mortality. Much remains to be understood about this new disease, including its intriguing ability to cause relapsing encephalitis in some survivors. This review provides an overview of the Nipah outbreak, focussing on what is presently known about it as an infectious disease, including the clinical aspects, pathology and pathogenesis.
    Matched MeSH terms: Paramyxovirinae/pathogenicity*
  6. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, et al.
    Am J Pathol, 2002 Dec;161(6):2153-67.
    PMID: 12466131
    In 1998, an outbreak of acute encephalitis with high mortality rates among pig handlers in Malaysia led to the discovery of a novel paramyxovirus named Nipah virus. A multidisciplinary investigation that included epidemiology, microbiology, molecular biology, and pathology was pivotal in the discovery of this new human infection. Clinical and autopsy findings were derived from a series of 32 fatal human cases of Nipah virus infection. Diagnosis was established in all cases by a combination of immunohistochemistry (IHC) and serology. Routine histological stains, IHC, and electron microscopy were used to examine autopsy tissues. The main histopathological findings included a systemic vasculitis with extensive thrombosis and parenchymal necrosis, particularly in the central nervous system. Endothelial cell damage, necrosis, and syncytial giant cell formation were seen in affected vessels. Characteristic viral inclusions were seen by light and electron microscopy. IHC analysis showed widespread presence of Nipah virus antigens in endothelial and smooth muscle cells of blood vessels. Abundant viral antigens were also seen in various parenchymal cells, particularly in neurons. Infection of endothelial cells and neurons as well as vasculitis and thrombosis seem to be critical to the pathogenesis of this new human disease.
    Matched MeSH terms: Paramyxovirinae/isolation & purification*; Paramyxovirinae/physiology
  7. Westbury HA
    Rev. - Off. Int. Epizoot., 2000 Apr;19(1):151-9.
    PMID: 11189712
    The author provides an account of the discovery of a previously undescribed disease of horses and a description of the studies involved in determining the aetiology of the disease. The causative virus, now named Hendra virus (HeV), is the reference virus for a proposed new genus within the virus family Paramyxoviridae. The virus is a lethal zoonotic agent able to cause natural disease in humans and horses and experimentally induced disease in cats, guinea-pigs and mice. The virus also naturally infects species of the family Megachiroptera, mainly subclinically, and such animals are the natural host of HeV. The virus appears to transmit readily between species of Megachiroptera, but not readily between horses under natural and experimental conditions, or from horses to humans. The method of transmission from bats to horses is not known. Three incidents of HeV disease in horses have been recorded in Australia--two in 1994 which caused the death of two humans and fifteen horses and one in 1999 which involved the death of a single horse. Hendra virus is related to Nipah virus, the virus that caused disease and mortality in humans, pigs, dogs and cats in Malaysia during 1998 and 1999.
    Matched MeSH terms: Paramyxovirinae/pathogenicity; Paramyxovirinae/physiology*
  8. Westbury H
    Vet J, 2000 Nov;160(3):165-6.
    PMID: 11061952
    Matched MeSH terms: Paramyxovirinae/growth & development*
  9. Tan CT, Goh KJ, Wong KT, Sarji SA, Chua KB, Chew NK, et al.
    Ann Neurol, 2002 Jun;51(6):703-8.
    PMID: 12112075
    An outbreak of infection with the Nipah virus, a novel paramyxovirus, occurred among pig farmers between September 1998 and June 1999 in Malaysia, involving 265 patients with 105 fatalities. This is a follow-up study 24 months after the outbreak. Twelve survivors (7.5%) of acute encephalitis had recurrent neurological disease (relapsed encephalitis). Of those who initially had acute nonencephalitic or asymptomatic infection, 10 patients (3.4%) had late-onset encephalitis. The mean interval between the first neurological episode and the time of initial infection was 8.4 months. Three patients had a second neurological episode. The onset of the relapsed or late-onset encephalitis was usually acute. Common clinical features were fever, headache, seizures, and focal neurological signs. Four of the 22 relapsed and late-onset encephalitis patients (18%) died. Magnetic resonance imaging typically showed patchy areas of confluent cortical lesions. Serial single-photon emission computed tomography showed the evolution of focal hyperperfusion to hypoperfusion in the corresponding areas. Necropsy of 2 patients showed changes of focal encephalitis with positive immunolocalization for Nipah virus antigens but no evidence of perivenous demyelination. We concluded that a unique relapsing and remitting encephalitis or late-onset encephalitis may result as a complication of persistent Nipah virus infection in the central nervous system.
    Matched MeSH terms: Paramyxovirinae*
  10. Tan CT, Wong KT
    Ann Acad Med Singap, 2003 Jan;32(1):112-7.
    PMID: 12625108
    INTRODUCTION: Between September 1998 and June 1999, there was a severe outbreak of viral encephalitis among the pig farm workers in Malaysia.

    METHODS: This is a review of the published literature related to the outbreak with the focus on human diseases.

    RESULTS: The encephalitis was caused by a newly discovered paramyxovirus related to Hendra virus, later named Nipah virus. There were 265 patients with acute encephalitis. The disease is thought to spread from pig to man through close contact. The risk of human-to-human spread is thought to below. The disease affected mainly adult Chinese males, half of whom had affected family members. The disease presented mainly as acute encephalitis with a short incubation period of less than two weeks, with the main symptoms of fever, headache, and giddiness followed by coma. Distinctive clinical signs include segmental myoclonus, areflexia and hypotonia, hypertension, and tachycardia. Initial cerebrospinal fluid was abnormal in 75% of patients. Serology was helpful in confirming the diagnosis. Magnetic resonance imaging showed distinctive changes of multiple, discrete, and small high signal lesions, best seen with fluid-attenuated inversion recovery (FLAIR) sequences. Mortality was high at 40% and death was probably due to severe brainstem involvement. The main necropsy finding in acute encephalitis was that of disseminated microinfarction associated with vasculitis and direct neuronal involvement. Ribavirin was able to reduce the mortality by 36%. Relapse encephalitis was seen in 7.5% of those who recovered from acute encephalitis, and late-onset encephalitis in 3.4% of those with initial non-encephalitic or asymptomatic diseases. The mean interval between initial illness and the onset of the complication was 8.4 months. The relapse and late-onset encephalitis which manifested as focal encephalitis arose from recurrent infection.

    CONCLUSION: Nipah virus, a recently discovered paramyxovirus, causes a unique encephalitis with high mortality as well as relapse and late-onset encephalitis. The infection is mainly spread from pigs to man.

    Matched MeSH terms: Paramyxovirinae*
  11. Solomon T
    Curr. Opin. Neurol., 2003 Jun;16(3):411-8.
    PMID: 12858080
    The exotic and emerging viral encephalitides are caused by animal or human viruses and characterised by sudden unexpected outbreaks of neurological disease, usually in tropical and sub-tropical regions, but sometimes spreading to temperate areas. Although a wide range of viruses come within this label, as this review highlights, there are common research questions as to the origin and spread of the viruses, the contribution of viral and host factors to the clinical presentations and outcome, and the possibilities for treatment and vaccination.
    Matched MeSH terms: Paramyxovirinae/pathogenicity
  12. Sherrini BA, Chong TT
    Med J Malaysia, 2014 Aug;69 Suppl A:103-11.
    PMID: 25417957
    Between September 1998 to May 1999, Malaysia and Singapore were hit by an outbreak of fatal encephalitis caused by a novel virus from the paramyxovirus family. This virus was subsequently named as Nipah virus, after the Sungei Nipah village in Negeri Sembilan, where the virus was first isolated. The means of transmission was thought to be from bats-topigs and subsequently pigs-to-human. Since 2001, almost yearly outbreak of Nipah encephalitis has been reported from Bangladesh and West Bengal, India. These outbreaks were characterized by direct bats-to-human, and human-to-human spread of infection. Nipah virus shares many similar characteristics to Hendra virus, first isolated in an outbreak of respiratory illness involving horses in Australia in 1994. Because of their homology, a new genus called Henipavirus (Hendra + Nipah) was introduced. Henipavirus infection is a human disease manifesting most often as acute encephalitis (which may be relapsing or late-onset) or pneumonia, with a high mortality rate. Pteropus bats act as reservoir for the virus, which subsequently lead to human spread. Transmission may be from consumption of food contaminated by bats secretion, contact with infected animals, or human-to-human spread. With wide geographical distribution of Pteropus bats, Henipavirus infection has become an important emerging human infection with worldwide implication.
    Matched MeSH terms: Paramyxovirinae
  13. Sarji SA, Abdullah BJ, Goh KJ, Tan CT, Wong KT
    AJR Am J Roentgenol, 2000 Aug;175(2):437-42.
    PMID: 10915690
    The newly discovered Nipah virus causes an acute febrile encephalitic illness in humans that is associated with a high mortality. The purpose of this study is to describe the MR imaging findings of Nipah encephalitis.
    Matched MeSH terms: Paramyxovirinae*
  14. Sahani M, Parashar UD, Ali R, Das P, Lye MS, Isa MM, et al.
    Int J Epidemiol, 2001 Oct;30(5):1017-20.
    PMID: 11689513
    BACKGROUND: An outbreak of encephalitis primarily affecting pig farmers occurred during 1998-1999 in Malaysia and was linked to a new paramyxovirus, Nipah virus, which infected pigs, humans, dogs, and cats. Because five abattoir workers were also affected, a survey was conducted to assess the risk of Nipah infection among abattoir workers.

    METHODS: Workers from all 143 registered abattoirs in 11 of 13 states in Malaysia were invited to participate in this cross-sectional study. Participants were interviewed to ascertain information on illness and activities performed at the abattoir. A serum sample was obtained to test for Nipah virus antibody.

    RESULTS: Seven (1.6 %) of 435 abattoir workers who slaughtered pigs versus zero (0%) of 233 workers who slaughtered ruminants showed antibody to Nipah virus (P = 0.05). All antibody-positive workers were from abattoirs in the three states that reported outbreak cases among pig farmers. Workers in these three states were more likely than those in other states to have Nipah antibody (7/144 [4.86%] versus 0/291 [0%], P < 0.001) and report symptoms suggestive of Nipah disease in pigs admitted to the abattoirs (P = 0.001).

    CONCLUSIONS: Nipah infection was not widespread among abattoir workers in Malaysia and was linked to exposure to pigs. Since it may be difficult to identify Nipah-infected pigs capable of transmitting virus by clinical symptoms, using personal protective equipment, conducting surveillance for Nipah infection on pig farms which supply abattoirs, and avoiding handling and processing of potentially infected pigs are presently the best strategies to prevent transmission of Nipah virus in abattoirs.

    Matched MeSH terms: Paramyxovirinae*
  15. Premalatha GD, Lye MS, Ariokasamy J, Parashar UD, Rahmat R, Lee BY, et al.
    PMID: 11127331
    Between September 1998 and May 1999, 265 cases of encephalitis were reported from among those involved in pig rearing. A few cases were also reported among abattoir workers. This raised questions of the risk of transmission among those who handled raw pork. A serosurvey was conducted among pork sellers in Seremban town, which is about 20 km from one of the pig rearing areas which had reported cases of encephalitis. It was found that out of the 28 pork sellers tested, only one tested positive for Nipah virus antibodies and that this pork seller also worked in an abattoir in the same district, removing the urinary bladders from slaughtered pigs. Based on these findings, it was concluded that the risk of transmission of the virus from handling raw pork appeared to be low.
    Matched MeSH terms: Paramyxovirinae*
  16. Pauly M, Pir JB, Loesch C, Sausy A, Snoeck CJ, Hübschen JM, et al.
    Appl Environ Microbiol, 2017 09 15;83(18).
    PMID: 28710271 DOI: 10.1128/AEM.01326-17
    Several infectious disease outbreaks with high mortality in humans have been attributed to viruses that are thought to have evolved from bat viruses. In this study from Luxembourg, the genetic diversity and epidemiology of paramyxoviruses and coronaviruses shed by the bat species Rhinolophus ferrumequinum and Myotis emarginatus were evaluated. Feces collection (n = 624) was performed longitudinally in a mixed-species colony in 2015 and 2016. In addition, feces (n = 254) were collected cross-sectionally from six Myotis emarginatus colonies in 2016. By use of degenerate primers in a nested format, overall prevalences of 1.1% (10/878) and 4.9% (43/878) were determined for paramyxoviruses and coronaviruses. Sequences of the partial RNA-dependent RNA polymerase and spike glycoprotein genes of coronaviruses, as well as sequences of the partial L gene of paramyxoviruses, were obtained. Novel paramyxovirus and Alphacoronavirus strains were identified in different Myotis emarginatus colonies, and severe acute respiratory syndrome (SARS)-related Betacoronavirus strains were shed by Rhinolophus ferrumequinum Logistic regression revealed that the level of Alphacoronavirus shedding was highest in July (odds ratio, 2.8; P < 0.01), probably due to periparturient stress. Phylogenetic analyses point to close virus-host coevolution, and the high genetic similarity of the study strains suggests that the Myotis emarginatus colonies in Luxembourg are socially connected. Most interestingly, we show that bats also host Betacoronavirus1 strains. The high similarity of the spike gene sequences of these viruses with mammalian Betacoronavirus 1 strains may be of concern. Both the SARS-related and Betacoronavirus 1 strains detected in bats in Luxembourg may cross the species barrier after a host adaptation process.IMPORTANCE Bats are a natural reservoir of a number of zoonotic pathogens. Several severe outbreaks in humans (e.g., a Nipah virus outbreak in Malaysia in 1998, and the almost global spread of severe acute respiratory syndrome in 2003) have been caused by bat-borne viruses that were transmitted to humans mostly after virus adaptation (e.g., in intermediate animal hosts). Despite the indigenousness of bat species that host viruses with suspected zoonotic potential and despite the zoonotic transmission of European bat 1 lyssavirus in Luxembourg, knowledge about the diversity and epidemiology of bat viruses remains limited in this country. Moreover, in contrast to other European countries, bat viruses are currently not included in the national surveillance activities of this land-locked country. We suggest that this gap in disease surveillance should be addressed, since we show here that synanthropic bats host viruses that may be able to cross the species barrier.
    Matched MeSH terms: Paramyxovirinae/classification; Paramyxovirinae/genetics; Paramyxovirinae/isolation & purification*
  17. Parashar UD, Sunn LM, Ong F, Mounts AW, Arif MT, Ksiazek TG, et al.
    J Infect Dis, 2000 May;181(5):1755-9.
    PMID: 10823779
    An outbreak of encephalitis affecting 265 patients (105 fatally) occurred during 1998-1999 in Malaysia and was linked to a new paramyxovirus, Nipah, that infected pigs, humans, dogs, and cats. Most patients were pig farmers. Clinically undetected Nipah infection was noted in 10 (6%) of 166 community-farm controls (persons from farms without reported encephalitis patients) and 20 (11%) of 178 case-farm controls (persons from farms with encephalitis patients). Case patients (persons with Nipah infection) were more likely than community-farm controls to report increased numbers of sick/dying pigs on the farm (59% vs. 24%, P=.001) and were more likely than case-farm controls to perform activities requiring direct contact with pigs (86% vs. 50%, P=.005). Only 8% of case patients reported no contact with pigs. The outbreak stopped after pigs in the affected areas were slaughtered and buried. Direct, close contact with pigs was the primary source of human Nipah infection, but other sources, such as infected dogs and cats, cannot be excluded.
    Matched MeSH terms: Paramyxovirinae
  18. Ozawa Y, Ong BL, An SH
    Rev. - Off. Int. Epizoot., 2001 Aug;20(2):605-13.
    PMID: 11548530
    Traceback systems in most countries of Asia are not well developed, as indicated by responses to a questionnaire by veterinary officials in thirteen countries. Marking of animals for traceback is practised only in a limited number of countries in specific areas or zones and for specific purposes only. In Malaysia, traceback has been undertaken by marking farm code tattoos on pigs. This enables the identification of the farm of origin of pigs found to be infected by Nipah virus in sero-surveillance programmes. The origin of the foot and mouth disease (FMD) virus that surfaced in the Republic of Korea in March 2000 was investigated through several epidemiological studies of suspected sources of contamination such as imported hay, yellow sand, milk collection trucks and feed delivery trucks. None of these studies gave results that indicated the origin of the FMD virus. The origin of the FMD virus that was recorded in Japan in March 2000 was also investigated in epidemiological studies; in this case, imported wheat straw was incriminated as the most likely source of infection. Comparative studies of the pathogenicities of FMD (type O) viruses isolated in Taipei China, the Republic of Korea and Japan, suggest that these viruses might have originated as vaccine strains used in a third country.
    Matched MeSH terms: Paramyxovirinae*
  19. Ong ST, Tan WS, Hassan SS, Mohd Lila MA, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Oct;6(5):347-50.
    PMID: 12385971
    The coding region of the nucleocapsid (N) gene was amplified from the viral RNA and inserted into the bacterial expression vector, pTrcHis2, for intracellular expression in three Escherichia coli strains: TOP 10, BL 21 and SG 935. The N protein was expressed as a fusion protein containing the myc epitope and His-tag at its C-terminal end. The amount of the fusion protein expressed in strain SG 935 was significantly higher than the other two strains, and was detected by the anti-myc antibody, anti-His and swine anti-NiV serum. Hence, the N(fus) protein produced in E. coli could serve as an alternative antigen for the detection of anti-NiV in swine.
    Matched MeSH terms: Paramyxovirinae/genetics*
  20. Okabe N, Morita K
    Uirusu, 2000 Jun;50(1):27-33.
    PMID: 10998976
    Matched MeSH terms: Paramyxovirinae*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links