Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Palaeya V, Lau YL, Mahmud R, Chen Y, Fong MY
    Malar J, 2013;12:182.
    PMID: 23734702 DOI: 10.1186/1475-2875-12-182
    Plasmodium knowlesi is the fifth species identified to cause malaria in humans and is often misdiagnosed as Plasmodium malariae due to morphological similarities. The development of an inexpensive, serological detection method utilizing antibodies specific to P. knowlesi would be a valuable tool for diagnosis. However, the identification of specific antigens for these parasites remains a major challenge for generating such assays. In this study, surface protein containing an altered thrombospondin repeat domain (SPATR) was selected as a potentially specific antigen from P. knowlesi. Its multistage expression by sporozoites, asexual erythrocytic forms and gametocytes, along with its possible role in liver cell invasion, suggests that SPATR could be used as a biomarker for diagnosis of P. knowlesi.
    Matched MeSH terms: Parasitology/methods*
  2. Lim YA, Ramasame SD, Mahdy MA, Sulaiman WY, Smith HV
    Parasitol Res, 2009 Dec;106(1):289-91.
    PMID: 19705155 DOI: 10.1007/s00436-009-1602-y
    Nine 50-l surface water samples from a Malaysian recreational lake were examined microscopically using an immunomagnetisable separation-immunofluorescent method. No Cryptosporidium oocysts were detected, but 77.8% of samples contained low numbers of Giardia cysts (range, 0.17-1.1 cysts/l), which were genetically characterised by SSU rRNA gene sequencing. Genotype analyses indicated the presence of Giardia duodenalis assemblage A suggesting potential risk to public health. The present study represents the first contribution to our knowledge of G. duodenalis assemblages in Malaysian recreational water.
    Matched MeSH terms: Parasitology/methods
  3. Barber BE, William T, Grigg MJ, Yeo TW, Anstey NM
    Malar J, 2013;12:8.
    PMID: 23294844 DOI: 10.1186/1475-2875-12-8
    In areas co-endemic for multiple Plasmodium species, correct diagnosis is crucial for appropriate treatment and surveillance. Species misidentification by microscopy has been reported in areas co-endemic for vivax and falciparum malaria, and may be more frequent in regions where Plasmodium knowlesi also commonly occurs.
    Matched MeSH terms: Parasitology/methods
  4. Elshafie EI, Sani RA, Hassan L, Sharma R, Bashir A, Abubakar IA
    Trop Biomed, 2013 Sep;30(3):444-50.
    PMID: 24189674 MyJurnal
    Apart from occasional reports of clinical disease affecting horses, there is no information about Trypanosoma evansi in horses in Peninsula Malaysia. Thus, a cross-sectional study was conducted in eight states in Peninsula Malaysia to determine the active presence of T. evansi in horses. A total of 527 blood samples were obtained and examined by haematocrit centrifugation technique (HCT), Giemsa-stained thin blood smear (GSS), morphometric measurements, polymerase chain reaction (PCR) and cloning of PCR products. The results showed an overall parasitological prevalence of 0.57% (3/527, CI: 1.6-0.19%) with both HCT and GSS. Morphometric study revealed the mean total length of the trypanosomes including the free flagellum was 27.94 ± 2.63 μm. PCR successfully amplified a trypanosome specific 257 bp in 1.14% of samples (6/527, CI: 2.4-0.52%) and was confirmed by nucleotide sequences. The mean packed cell volume (PCV) for the positive cases detected by HCT was lower (23% ± 7.00) compared to the positive cases detected by PCR alone in the state of Terengganu (35% ± 4.73). In conclusion, this study showed T. evansi infection occurred in low frequency in horses in Peninsula Malaysia, and anaemia coincided with parasitaemic animals. PCR is considered as a sensitive diagnostic tool when parasitaemia is undetectable. The slight lengthier mean of parasite and anaemia may indicate a virulent strain of T. evansi circulating throughout the country. Thus, it's highly recommended to shed light on host-parasite relationship for better epidemiological understanding.
    Matched MeSH terms: Parasitology/methods
  5. Romano N, Nor Azah MO, Rahmah N, Lim Y AL, Rohela M
    Trop Biomed, 2010 Dec;27(3):585-94.
    PMID: 21399601 MyJurnal
    Toxocariasis is a zoonotic helminthic infection of humans caused by the dog roundworm (Toxocara canis) or cat roundworm (Toxocara cati). There are two main human syndromes: visceral larva migrans (VLM), which are characterized by symptoms associated with major organs and ocular larva migrans (OLM), in which pathological effects on the host are restricted to the eye and the optic nerve. The present study evaluated the seroprevalence of toxocariasis among the Orang Asli with an IgG4-ELISA using recombinant antigens (rTES-26, rTES-30 and rTES-120) and an IgG-ELISA commercial kit (Cypress Diagnostic, Belgium). A total of 188 serum samples were analyzed using IgG4-ELISA recombinant antigens while 83 were tested using IgG-ELISA. Overall, 9 out of 188 (4.8%) samples were positive with the former assay: rTES-26 (2.7%) and rTES-30 (2.1%); and 63 out of 83 (75.9%) were positive with the IgG-ELISA. In general, the seroprevalence of toxocariasis among males (9.5%) was higher compared to females (1%). Children below 12 years (6.3%) have higher seroprevalence rate compared to adults (1.2%). Out of 59 IgG positive samples, 56 (94.9%) were also positive with soil-transmitted helminth (STH) infections which may indicate high false positivity. None of the IgG4- ELISA positive samples were positive with STH infections. Of 9 positive samples with IgG4-ELISA, 7 were also positive with IgG-ELISA giving the probability of true cases. The present finding indicated that exposure to Toxocara infection is not unusual among Malaysian aborigines, and it affects both sexes and all age groups. As a prevention strategy, more effective public health programmes to promote better understanding on the consequences of toxocariasis among the Orang Asli communities are deemed necessary.
    Matched MeSH terms: Parasitology/methods
  6. Barber BE, William T, Grigg MJ, Piera K, Yeo TW, Anstey NM
    J Clin Microbiol, 2013 Apr;51(4):1118-23.
    PMID: 23345297 DOI: 10.1128/JCM.03285-12
    Plasmodium knowlesi can cause severe and fatal human malaria in Southeast Asia. Rapid diagnosis of all Plasmodium species is essential for initiation of effective treatment. Rapid diagnostic tests (RDTs) are sensitive for detection of uncomplicated and severe falciparum malaria but have not been systematically evaluated in knowlesi malaria. At a tertiary referral hospital in Sabah, Malaysia, we prospectively evaluated the sensitivity of two combination RDTs for the diagnosis of uncomplicated and severe malaria from all three potentially fatal Plasmodium species, using a pan-Plasmodium lactate dehydrogenase (pLDH)-P. falciparum histidine-rich protein 2 (PfHRP2) RDT (First Response) and a pan-Plasmodium aldolase-PfHRP2 RDT (ParaHIT). Among 293 hospitalized adults with PCR-confirmed Plasmodium monoinfection, the sensitivity of the pLDH component of the pLDH-PfHRP2 RDT was 74% (95/129; 95% confidence interval [CI], 65 to 80%), 91% (110/121; 95% CI, 84 to 95%), and 95% (41/43; 95% CI, 85 to 99%) for PCR-confirmed P. knowlesi, P. falciparum, and P. vivax infections, respectively, and 88% (30/34; 95% CI, 73 to 95%), 90% (38/42; 95% CI, 78 to 96%), and 100% (12/12; 95% CI, 76 to 100%) among patients tested before antimalarial treatment was begun. Sensitivity in severe malaria was 95% (36/38; 95% CI, 83 to 99), 100% (13/13; 95% CI, 77 to 100), and 100% (7/7; 95% CI, 65 to 100%), respectively. The aldolase component of the aldolase-PfHRP2 RDT performed poorly in all Plasmodium species. The pLDH-based RDT was highly sensitive for the diagnosis of severe malaria from all species; however, neither the pLDH- nor aldolase-based RDT demonstrated sufficiently high overall sensitivity for P. knowlesi. More sensitive RDTs are needed in regions of P. knowlesi endemicity.
    Matched MeSH terms: Parasitology/methods
  7. Chew CH, Lim YA, Lee PC, Mahmud R, Chua KH
    J Clin Microbiol, 2012 Dec;50(12):4012-9.
    PMID: 23035191 DOI: 10.1128/JCM.06454-11
    Malaria remains one of the major killers of humankind and persists to threaten the lives of more than one-third of the world's population. Given that human malaria can now be caused by five species of Plasmodium, i.e., Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and the recently included Plasmodium knowlesi, there is a critical need not only to augment global health efforts in malaria control but also, more importantly, to develop a rapid, accurate, species-sensitive/species-specific, and economically effective diagnostic method for malaria caused by these five species. Therefore, in the present study, a straightforward single-step hexaplex PCR system targeting five human Plasmodium 18S small-subunit rRNAs (ssu rRNAs) was designed, and the system successfully detected all five human malaria parasites. In addition, this system enables the differentiation of single infection as well as mixed infections up to the two-species level. This assay was validated with 50 randomly blinded test and 184 clinical samples suspected to indicate malaria. This hexaplex PCR system is not only an ideal alternative for routine malaria diagnosis in laboratories with conventional PCR machines but also adds value to diagnoses when there is a lack of an experienced microscopist or/and when the parasite morphology is confusing. Indeed, this system will definitely enhance the accuracy and accelerate the speed in the diagnosis of malaria, as well as improve the efficacy of malaria treatment and control, in addition to providing reliable data from epidemiological surveillance studies.
    Matched MeSH terms: Parasitology/methods*
  8. Foster D, Cox-Singh J, Mohamad DS, Krishna S, Chin PP, Singh B
    Malar J, 2014;13:60.
    PMID: 24548805 DOI: 10.1186/1475-2875-13-60
    Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, infects humans and can cause fatal malaria. It is difficult to diagnose by microscopy because of morphological similarity to Plasmodium malariae. Nested PCR assay is the most accurate method to distinguish P. knowlesi from other Plasmodium species but is not cost effective in resource-poor settings. Rapid diagnostic tests (RDTs) are recommended for settings where malaria is prevalent. In this study, the effectiveness of three RDTs in detecting P. knowlesi from fresh and frozen patient blood samples was evaluated.
    Matched MeSH terms: Parasitology/methods*
  9. Lau YL, Anthony C, Fakhrurrazi SA, Ibrahim J, Ithoi I, Mahmud R
    Parasit Vectors, 2013;6(1):250.
    PMID: 23985047 DOI: 10.1186/1756-3305-6-250
    Amebiasis caused by Entamoeba histolytica is the third leading cause of death worldwide. This pathogenic amoeba is morphologically indistinguishable from E. dispar and E. moshkovskii, the non-pathogenic species. Polymerase chain reaction is the current method of choice approved by World Health Organization. Real-time PCR is another attractive molecular method for diagnosis of infectious diseases as post-PCR analyses are eliminated and turnaround times are shorter. The present work aimed to compare the results of Entamoeba species identification using the real-time assay against the established nested PCR method.
    Matched MeSH terms: Parasitology/methods*
  10. Kantele A, Jokiranta TS
    Clin Infect Dis, 2011 Jun;52(11):1356-62.
    PMID: 21596677 DOI: 10.1093/cid/cir180
    Human malaria has been known to be caused by 4 Plasmodium species, with Plasmodium falciparum causing the most-severe disease. Recently, numerous reports have described human malaria caused by a fifth Plasmodium species, Plasmodium knowlesi, which usually infects macaque monkeys. Hundreds of human cases have been reported from Malaysia, several cases have been reported in other Southeast Asian countries, and a few cases have been reported in travelers visiting these areas. Similarly to P. falciparum, P. knowlesi can cause severe and even fatal cases of disease that are more severe than those caused by the other Plasmodium species. Polymerase chain reaction is of value for diagnosis because P. knowlesi infection is easily misdiagnosed as less dangerous Plasmodium malariae infection with conventional microscopy. P. knowlesi infection should be suspected in patients who are infected with malaria in Southeast Asia. If human-mosquito-human transmission were to occur, the disease could spread to new areas where the mosquito vectors live, such as the popular tourist areas in western India.
    Matched MeSH terms: Parasitology/methods
  11. Ning TZ, Kin WW, Mustafa S, Ahmed A, Noordin R, Cheong TG, et al.
    Asian Pac J Trop Biomed, 2012 Jan;2(1):61-5.
    PMID: 23569836 DOI: 10.1016/S2221-1691(11)60191-3
    To compare the efficacy of three different tissue stains, namely haematoxylin and eosin (H&E), periodic-acid Schiff (PAS) and immunohistochemical (IHC) stains for detection of Entamoeba histolytica (E. histolytica) trophozoites in abscessed liver tissues of hamster.
    Matched MeSH terms: Parasitology/methods*
  12. Lau YL, Fong MY, Mahmud R, Chang PY, Palaeya V, Cheong FW, et al.
    Malar J, 2011;10:197.
    PMID: 21774805 DOI: 10.1186/1475-2875-10-197
    The emergence of Plasmodium knowlesi in humans, which is in many cases misdiagnosed by microscopy as Plasmodium malariae due to the morphological similarity has contributed to the needs of detection and differentiation of malaria parasites. At present, nested PCR targeted on Plasmodium ssrRNA genes has been described as the most sensitive and specific method for Plasmodium detection. However, this method is costly and requires trained personnel for its implementation. Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method was developed for the clinical detection of P. knowlesi. The sensitivity and specificity of LAMP was evaluated in comparison to the results obtained via microscopic examination and nested PCR.
    Matched MeSH terms: Parasitology/methods*
  13. Lim YA, Mahmud R, Chew CH, T T, Chua KH
    Malar J, 2010;9:272.
    PMID: 20929588 DOI: 10.1186/1475-2875-9-272
    BACKGROUND:
    Plasmodium ovale infection is rarely reported in Malaysia. This is the first imported case of P. ovale infection in Malaysia which was initially misdiagnosed as Plasmodium vivax.

    METHODS:
    Peripheral blood sample was first examined by Giemsa-stained microscopy examination and further confirmed using a patented in-house multiplex PCR followed by sequencing.

    RESULTS AND DISCUSSION:
    Initial results from peripheral blood smear examination diagnosed P. vivax infection. However further analysis using a patented in-house multiplex PCR followed by sequencing confirmed the presence of P. ovale. Given that Anopheles maculatus and Anopheles dirus, vectors of P. ovale are found in Malaysia, this finding has significant implication on Malaysia's public health sector.

    CONCLUSIONS:
    The current finding should serve as an alert to epidemiologists, clinicians and laboratory technicians in the possibility of finding P. ovale in Malaysia. P. ovale should be considered in the differential diagnosis of imported malaria cases in Malaysia due to the exponential increase in the number of visitors from P. ovale endemic regions and the long latent period of P. ovale. It is also timely that conventional diagnosis of malaria via microscopy should be coupled with more advanced molecular tools for effective diagnosis.
    Matched MeSH terms: Parasitology/methods
  14. Tan TC, Suresh KG, Smith HV
    Parasitol Res, 2008 Dec;104(1):85-93.
    PMID: 18795333 DOI: 10.1007/s00436-008-1163-5
    Despite frequent reports on the presence of Blastocystis hominis in human intestinal tract, its pathogenicity remains a matter of intense debate. These discrepancies may be due to the varying pathogenic potential or virulence of the isolates studied. The present study represents the first to investigate both phenotypic and genotypic characteristics of B. hominis obtained from symptomatic and asymptomatic individuals. Symptomatic isolates had a significantly greater size range and lower growth rate in Jones' medium than asymptomatic isolates. The parasite cells of symptomatic isolates exhibited rougher surface topography and greater binding affinity to Canavalia ensiformis (ConA) and Helix pomatia (HPA). The present study also identifies further phenotypic characteristics, which aided in differentiating the pathogenic forms from the non-pathogenic forms of B. hominis. Blastocystis subtype 3 was found to be correlated well with the disease.
    Matched MeSH terms: Parasitology/methods
  15. Anuar TS, Ghani MK, Azreen SN, Salleh FM, Moktar N
    Parasit Vectors, 2013;6:40.
    PMID: 23433099 DOI: 10.1186/1756-3305-6-40
    Blastocystis has been described as the most common intestinal parasite in humans and has an increased impact on public health. However, the transmission of this parasite has not been conclusively determined.
    Matched MeSH terms: Parasitology/methods
  16. Anuar TS, Al-Mekhlafi HM, Abdul Ghani MK, Abu Bakar E, Azreen SN, Salleh FM, et al.
    J Microbiol Methods, 2013 Mar;92(3):344-8.
    PMID: 23361047 DOI: 10.1016/j.mimet.2013.01.010
    This study was conducted to evaluate two routinely microscopic diagnostic methods in comparison with single-round PCR assay as the reference technique to detect Entamoeba histolytica/dispar/moshkovskii. Examination was performed on 500 stool samples obtained from Orang Asli communities in different states of Malaysia using formalin-ether sedimentation, trichrome staining and single-round PCR techniques. Ninety-three stool samples were detected E. histolytica/dispar/moshkovskii positive by routine microscopy, while single-round PCR detected 106 positive samples. Additional positives detected by PCR assay were eventually confirmed to be negative by both microscopic techniques. Detection rate of E. histolytica/dispar/moshkovskii was highest in combination techniques (18.6%), followed by trichrome staining (13.4%) and formalin-ether sedimentation (11.2%) techniques. Single-round PCR detected 21.2% of the stool samples. The sensitivity and specificity of formalin-ether sedimentation and trichrome staining techniques compared to the reference technique were 31.1% (95% CI: 29.0-36.0) and 94.2% (95% CI: 89.8-98.9), and 53.8% (95% CI: 46.0-76.2) and 97.5% (95% CI: 92.8-99.1), respectively. However, the sensitivity [59.4% (95% CI: 48.9-78.5)] of the method increased when both techniques were performed together, but the specificity decreased to 92.4% (95% CI: 81.0-98.0). The agreement between the reference technique, trichrome staining and combination techniques were statistically significant by Kappa statistics (trichrome staining: K = 0.592, p < 0.05; combination techniques: K = 0.543, p < 0.05). Hence, the combination technique is recommended to be used as a screening method in the diagnosis of E. histolytica/dispar/moshkovskii infections either for clinical or epidemiological study.
    Matched MeSH terms: Parasitology/methods*
  17. Eamsobhana P, Prasartvit A, Gan XX, Yong HS
    Trop Biomed, 2015 Mar;32(1):121-5.
    PMID: 25801261
    Angiostrongylus cantonensis is the most frequent cause of eosinophilic meningitis in humans in Thailand and worldwide. Because of difficulty of recovering the Angiostrongylus larvae from infected patients, detection of parasite-specific antibodies is used to support clinical diagnosis. This study tested serum samples from eosinophilic meningitis patients and individuals at risk of infection with A. cantonensis to evaluate a recently developed simple and rapid dot-immunogold filtration assay (DIGFA) for detection of specific antibodies against A. cantonensis. Purified 31-kDa glycoprotein of A. cantonensis and protein A colloidal gold conjugate were employed to detect the 31-kDa anti-A. cantonensis antibody in patients sera from the parasite endemic areas of northeast Thailand. The results were compared with those obtained by dot-blot enzyme-linked immunosorbent assay (ELISA) with 31-kDa A. cantonensis antigen. The overall positivity rate of DIGFA and dot-blot ELISA for A. cantonensis infection in 98 clinically diagnosed cases from three highly endemic districts in Khon Kaen province were 39.79% and 37.75%, respectively. Among 86 sera of subjects at risk of infection with A. cantonensis, 24.41% were positive by DIGFA and 23.25% by dot-blot ELISA. There were good correlation between the visual grading of DIGFA and dot-blot ELISA in both groups of defined sera. DIGFA is as sensitive and specific as dot-blot ELISA for confirming eosinophilic meningitis due to A. cantonensis infection, with advantages of simplicity, rapidity and without the use of specific and expensive equipment, and can be used in field settings.
    Matched MeSH terms: Parasitology/methods*
  18. Salleh FM, Moktar N, Yasin AM, Al-Mekhlafi HM, Anuar TS
    J Microbiol Methods, 2014 Nov;106:143-145.
    PMID: 25193442 DOI: 10.1016/j.mimet.2014.08.019
    To improve the stool concentration procedure, we modified different steps of the standard formalin-ether concentration technique and evaluated these modifications by examining stool samples collected in the field. Seven samples were found positive by the modified formalin-ether concentration technique (M-FECT). Therefore, the M-FECT procedure provides enhanced detection of Cryptosporidium oocysts.
    Matched MeSH terms: Parasitology/methods*
  19. Salleh FM, Anuar TS, Yasin AM, Moktar N
    J Microbiol Methods, 2012 Oct;91(1):174-8.
    PMID: 22986100 DOI: 10.1016/j.mimet.2012.08.004
    Permanent staining of faecal smears by Wheatley's trichrome technique has been used by many scientists for the detection of parasites in the past and it was found to be highly sensitive. This study was conducted to evaluate the use of Wintergreen oil in comparison with xylene in Wheatley's trichrome staining technique, as the reference technique. In a blind comparison study, 500 collected faecal samples from aboriginal communities were examined. Wintergreen oil was found to be more superior than xylene as a clearing agent in the Wheatley's trichrome staining of polyvinyl alcohol-fixed faecal smears for the identification of intestinal protozoa. Elimination of toxic, carcinogenic, and fire hazards makes Wintergreen oil the preferred choice in routine parasitology examinations.
    Matched MeSH terms: Parasitology/methods*
  20. Southgate BA, Bryan JH
    Trans R Soc Trop Med Hyg, 1992 9 1;86(5):523-30.
    PMID: 1475823
    Quantitative understanding of the transmission dynamics of lymphatic filarial parasites is essential for the rational planning of control strategies. One of the most important determinants of transmission dynamics is the relationship between parasite yield, the success rate of ingested microfilariae (mf) becoming infective larvae in a mosquito vector, and mf density in the source of the human blood meal. Three types of relationship have been recognized in human filaria/mosquito couples--limitation, facilitation and proportionality; facilitation has hitherto been observed only in the couple Wuchereria bancrofti/Anopheles gambiae in Burkina Faso, in experimental studies on a high density mf carrier. The present paper demonstrates facilitation in W. bancrofti/An. gambiae and W. bancrofti/An. arabiensis in lower mf density carriers in The Gambia and Tanzania, and in W. bancrofti/An. funestus in Tanzania. Facilitation was not found in An. melas in The Gambia nor in An. merus in Tanzania. Analysis of published data shows limitation at low level mf densities in W. bancrofti/Culex quinquefasciatus in Sri Lanka, and in the same couple in India. Limitation also occurs in Brugia malayi/Aedes togoi in experimental cats; proportionality occurs in B. malayi/Mansonia bonneae in Malaysia. The epidemiological significance of these host/parasite relationships is discussed, and supporting evidence for its validity is presented from the published results of large-scale control programmes.
    Matched MeSH terms: Parasitology/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links