Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Seethamchai S, Buppan P, Kuamsab N, Teeranaipong P, Putaporntip C, Jongwutiwes S
    Infect Genet Evol, 2018 11;65:35-42.
    PMID: 30016713 DOI: 10.1016/j.meegid.2018.07.015
    The amino acid substitution at residue 76 of the food vacuolar transmembrane protein encoded by the chloroquine resistance transporter gene of Plasmodium falciparum (Pfcrt) is an important, albeit imperfect, determinant of chloroquine susceptibility status of the parasite. Other mutations in Pfcrt can modulate susceptibility of P. falciparum to other antimalarials capable of interfering with heme detoxification process, and may exert compensatory effect on parasite growth rate. To address whether nationwide implementation of artemisinin combination therapy (ACT) in Thailand could affect sequence variation in exon 2 and introns of Pfcrt, we analyzed 136 P. falciparum isolates collected during 1997 and 2016 from endemic areas bordering Myanmar, Cambodia and Malaysia. Results revealed 6 haplotypes in exon 2 of Pfcrt with 2 novel substitutions at c.243A > G (p.R81) and c.251A > T (p.N84I). Positive selection was observed at amino acid residues 75, 76 and 97. Four, 3, and 2 alleles of microsatellite (AT/TA) repeats occurred in introns 1, 2 and 4, respectively, resulting in 7 different 3-locus haplotypes. The number of haplotypes and haplotype diversity of exon 2, and introns 1, 2 and 4 were significantly greater among isolates collected during 2009 and 2016 than those collected during 1997 and 2008 when 3-day ACT and 2-day ACT regimens were implemented nationwide, respectively (p falciparum in Thailand continues to evolve and could have been affected by selective pressure from modification of ACT regimen.
    Matched MeSH terms: Plasmodium falciparum/genetics*
  2. Zaw MT, Emran NA, Lin Z
    J Microbiol Immunol Infect, 2018 Apr;51(2):159-165.
    PMID: 28711439 DOI: 10.1016/j.jmii.2017.06.009
    BACKGROUND: In the fight against malaria caused by Plasmodium falciparum, the successes achieved by artemisinin were endangered by resistance of the parasites to the drug. Whole genome sequencing approach on artemisinin resistant parasite line discovered k13 gene associated with drug resistance. In vitro and in vivo studies indicated mutations in the k13 gene were linked to the artemisinin resistance.

    METHODOLOGY: The literatures published after April, 2015 up to December, 2016 on k13 mutant alleles for artemisinin resistance in Plasmodium falciparum and relevant literatures were comprehensively reviewed.

    RESULTS: To date, 13 non-synonymous mutations of k13 gene have been observed to have slow parasite clearance. Worldwide mapping of k13 mutant alleles have shown mutants associated with artemisinin resistance were confined to southeast Asia and China and did not invade to African countries. Although in vitro ring stage survival assay of 0-3 h was a recently developed assay, it was useful for rapid detection of artemisinin resistance associated k13 allelic marker in the parasite. Recently, dissemination of k13 mutant alleles was recommended to be investigated by identity of haplotypes. Significant characteristics of well described alleles in the reports were mentioned in this review for the benefit of future studies.

    CONCLUSION: According to the updates in the review, it can be concluded artemisinin resistance does not disseminate to India and African countries within short period whereas regular tracking of these mutants is necessary.

    Matched MeSH terms: Plasmodium falciparum/genetics
  3. Alam MT, Vinayak S, Congpuong K, Wongsrichanalai C, Satimai W, Slutsker L, et al.
    Antimicrob Agents Chemother, 2011 Jan;55(1):155-64.
    PMID: 20956597 DOI: 10.1128/AAC.00691-10
    The emergence and spread of drug-resistant Plasmodium falciparum have been a major impediment for the control of malaria worldwide. Earlier studies have shown that similar to chloroquine (CQ) resistance, high levels of pyrimethamine resistance in P. falciparum originated independently 4 to 5 times globally, including one origin at the Thailand-Cambodia border. In this study we describe the origins and spread of sulfadoxine-resistance-conferring dihydropteroate synthase (dhps) alleles in Thailand. The dhps mutations and flanking microsatellite loci were genotyped for P. falciparum isolates collected from 11 Thai provinces along the Burma, Cambodia, and Malaysia borders. Results indicated that resistant dhps alleles were fixed in Thailand, predominantly being the SGEGA, AGEAA, and SGNGA triple mutants and the AGKAA double mutant (mutated codons are underlined). These alleles had different geographical distributions. The SGEGA alleles were found mostly at the Burma border, while the SGNGA alleles occurred mainly at the Cambodia border and nearby provinces. Microsatellite data suggested that there were two major genetic lineages of the triple mutants in Thailand, one common for SGEGA/SGNGA alleles and another one independent for AGEAA. Importantly, the newly reported SGNGA alleles possibly originated at the Thailand-Cambodia border. All parasites in the Yala province (Malaysia border) had AGKAA alleles with almost identical flanking microsatellites haplotypes. They were also identical at putatively neutral loci on chromosomes 2 and 3, suggesting a clonal nature of the parasite population in Yala. In summary, this study suggests multiple and independent origins of resistant dhps alleles in Thailand.
    Matched MeSH terms: Plasmodium falciparum/genetics
  4. Othman AS, Marin-Mogollon C, Salman AM, Franke-Fayard BM, Janse CJ, Khan SM
    Expert Rev Vaccines, 2017 Jul;16(7):1-13.
    PMID: 28525963 DOI: 10.1080/14760584.2017.1333426
    INTRODUCTION: Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.
    Matched MeSH terms: Plasmodium falciparum/genetics
  5. Al-abd NM, Mahdy MA, Al-Mekhlafi AM, Snounou G, Abdul-Majid NB, Al-Mekhlafi HM, et al.
    PLoS One, 2013;8(7):e67853.
    PMID: 23861823 DOI: 10.1371/journal.pone.0067853
    The accuracy of the conclusions from in vivo efficacy anti-malarial drug trials depends on distinguishing between recrudescences and re-infections which is accomplished by genotyping genes coding P. falciparum merozoite surface 1 (MSP1) and MSP2. However, the reliability of the PCR analysis depends on the genetic markers' allelic diversity and variant frequency. In this study the genetic diversity of the genes coding for MSP1 and MSP2 was obtained for P. falciparum parasites circulating in Yemen.
    Matched MeSH terms: Plasmodium falciparum/genetics*
  6. Madkhali AM, Abdulhaq AA, Atroosh WM, Ghzwani AH, Zain KA, Ghailan KY, et al.
    Parasitol Res, 2021 Nov;120(11):3771-3781.
    PMID: 34561749 DOI: 10.1007/s00436-021-07323-4
    This study investigated the polymorphism in the P. falciparum chloroquine resistance transporter (pfcrt) gene 11 years after chloroquine (CQ) cessation in Jazan region, southwestern Saudi Arabia. Two hundred and thirty-five P. falciparum isolates were amplified to detect mutations in the pfcrt gene. The pfcrt 76 T molecular marker for CQ resistance was detected in 66.4% (156/235) of the isolates, while the K76 CQ-sensitive wild type was detected in 33.6%. The pfcrt 74I and pfcrt 75E point mutations were each found to be present in 56.2% of isolates, while only four isolates (1.7%) were found to carry the pfcrt 72S mutation. Moreover, four pfcrt haplotypes were identified as follows: the CVIET triple-allele (56.2%), SVMET double-allele (1.7%) and CVMNT single-allele (8.5%) mutant haplotypes and the CVMNK wild haplotype (33.6%). The analysis also revealed significant associations between the prevalence of mutant pfcrt alleles and haplotypes and the age group, governorate and nationality of the patients as well as the parasitaemia level (p falciparum strains in Jazan region over a decade after CQ discontinuation, with about one third of the isolates analysed carrying the pfcrt K76 CQ-sensitive wild allele and the CVMNK ancestral wild haplotype. Although the reintroduction of CQ cannot be recommended at present in Saudi Arabia, these findings support the rationale for a potential future role for CQ in malaria treatment. Therefore, continuous molecular and in vitro monitoring mutations of pfcrt polymorphism in Jazan region is highly recommended.
    Matched MeSH terms: Plasmodium falciparum/genetics
  7. Al-Hamidhi S, Mahdy MA, Idris MA, Bin Dajem SM, Al-Sheikh AA, Al-Qahtani A, et al.
    Infect Genet Evol, 2014 Oct;27:25-31.
    PMID: 24981966 DOI: 10.1016/j.meegid.2014.06.015
    In the Arabian Peninsula malaria control is progressing steadily, backed by adequate logistic and political support. As a result, transmission has been interrupted throughout the region, with exception of limited sites in Yemen and Saudi Arabia. Here we examined Plasmodium falciparum parasites in these sites to assess if the above success has limited diversity and gene flow.
    Matched MeSH terms: Plasmodium falciparum/genetics*
  8. Lim PK, Tan SK, Khoo AS, Noor Rain A, Nagappan S, Mak JW
    PMID: 9740263
    Matched MeSH terms: Plasmodium falciparum/genetics*
  9. Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Surin J
    Malar J, 2012;11:251.
    PMID: 22853645 DOI: 10.1186/1475-2875-11-251
    Malaria is still a public health problem in Malaysia with chloroquine (CQ) being the first-line drug in the treatment policy of uncomplicated malaria. There is a scarcity in information about the magnitude of Plasmodium falciparum CQ resistance. This study aims to investigate the presence of single point mutations in the P. falciparum chloroquine-resistance transporter gene (pfcrt) at codons 76, 271, 326, 356 and 371 and in P. falciparum multi-drug resistance-1 gene (pfmdr1) at codons 86 and 1246, as molecular markers of CQ resistance.
    Matched MeSH terms: Plasmodium falciparum/genetics
  10. Bamaga OA, Mahdy MA, Lim YA
    Acta Trop, 2015 Sep;149:59-63.
    PMID: 26001972 DOI: 10.1016/j.actatropica.2015.05.013
    Malaria is still a major public health problem in Yemen. More than 95% of the malaria cases are due to Plasmodium ‎falciparum‎. Recently in Yemen, the antimalarial treatment policy was changed from chloroquine (CQ) to artemisinin combination therapy (ACTs). However, CQ is still available and prescribed in the Yemeni market. The persistence of CQ resistance will be prolonged if the shift to ACT and the simultaneous withdrawal of CQ are not rigorously implemented. The aim of the current survey is to detect chloroquine-resistant mutations in P. falciparum chloroquine-resistance transporter (pfcrt) and P. falciparum multi-drug resistance-1 (pfmdr1) genes. These data will be important for future monitoring and assessment of antimalarial drug policy in Yemen. Blood specimens were collected from 735 individuals from different districts of the Hadhramout province, Yemen by house-to-house visit. Mutation-specific nested polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP) methods were used to investigate the mutations in the pfmdr1(codons 86 and 1246) and pfcrt (codons 76, 271, 326, 356 and 371) genes. The overall prevalence of pfcrt mutations at codons 76, 271, 326 and 371 were 50.4%, 58.7%, 54.3% and 44.9%, respectively. All isolates had wild-type pfcrt 356 allele. The majority of pfmdr1 86 alleles (83.3%) and all pfmdr1 1246 alleles were wild type. There was no association between pfcrt mutations and symptomatology, gender and age groups. In conclusion, point mutations in codons 76, 271, 326 and 371 of pfcrt of P. falciparum are high suggesting a sustained high CQ resistance even after 4 years of shifting to ACTs. These findings warrant complete withdrawal of CQ use from the Yemeni market for P. falciparum and careful usage of CQ for treating Plasmodium vivax.
    Matched MeSH terms: Plasmodium falciparum/genetics*
  11. Dooley NL, Chabikwa TG, Pava Z, Loughland JR, Hamelink J, Berry K, et al.
    Nat Commun, 2023 Nov 15;14(1):7387.
    PMID: 37968278 DOI: 10.1038/s41467-023-43181-7
    Plasmodium falciparum malaria drives immunoregulatory responses across multiple cell subsets, which protects from immunopathogenesis, but also hampers the development of effective anti-parasitic immunity. Understanding malaria induced tolerogenic responses in specific cell subsets may inform development of strategies to boost protective immunity during drug treatment and vaccination. Here, we analyse the immune landscape with single cell RNA sequencing during P. falciparum malaria. We identify cell type specific responses in sub-clustered major immune cell types. Malaria is associated with an increase in immunosuppressive monocytes, alongside NK and γδ T cells which up-regulate tolerogenic markers. IL-10-producing Tr1 CD4 T cells and IL-10-producing regulatory B cells are also induced. Type I interferon responses are identified across all cell types, suggesting Type I interferon signalling may be linked to induction of immunoregulatory networks during malaria. These findings provide insights into cell-specific and shared immunoregulatory changes during malaria and provide a data resource for further analysis.
    Matched MeSH terms: Plasmodium falciparum/genetics
  12. Cox-Singh J, Zakaria R, Abdullah MS, Rahman HA, Nagappan S, Singh B
    Am J Trop Med Hyg, 2001 6 27;64(1-2):28-31.
    PMID: 11425158
    Dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr) alleles were typed in 67 Malaysian Plasmodium falciparum isolates. The isolates were collected from two geographically distinct locations: 51 from Sabah, Malaysian Borneo, where sulfadoxine/pyrimethamine (SDX/PYR) is used to treat uncomplicated malaria and 16 from Peninsular Malaysia where in vivo resistance to SDX/PYR has been reported. A total of seven dhps alleles were identified with no significant difference in allele frequency between the 2 populations. Two of the dhps alleles described here have not been previously reported. Four dhfr alleles were detected in 67 P. falciparum isolates. Eighty-seven percent of the isolates from the Peninsula, where clinical SDX/PYR failure has been reported, had dhfr alleles with triple point mutations while all of the isolates from Sabah had dhfr alleles with 2 or less point mutations. The difference in dhfr allele frequency between the two populations was highly significant. There was no correlation between in vitro PYR response and accumulation of dhfr point mutations.
    Matched MeSH terms: Plasmodium falciparum/genetics*
  13. Gitaka JN, Takeda M, Kimura M, Idris ZM, Chan CW, Kongere J, et al.
    Malar J, 2017 03 02;16(1):98.
    PMID: 28253868 DOI: 10.1186/s12936-017-1743-x
    BACKGROUND: Plasmodium falciparum SURFIN4.1is a putative ligand expressed on the merozoite and likely on the infected red blood cell, whose gene was suggested to be under directional selection in the eastern Kenyan population, but under balancing selection in the Thai population. To understand this difference, surf4.1sequences of western Kenyan P. falciparum isolates were analysed. Frameshift mutations and copy number variation (CNV) were also examined for the parasites from western Kenya and Thailand.

    RESULTS: Positively significant departures from neutral expectations were detected on the surf4.1region encoding C-terminus of the variable region 2 (Var2) by 3 population-based tests in the western Kenyan population as similar in the Thai population, which was not covered by the previous analysis for eastern Kenyan population. Significant excess of non-synonymous substitutions per nonsynonymous site over synonymous substitutions per synonymous site was also detected in the Var2 region. Negatively significant departures from neutral expectations was detected on the region encoding Var1 C-terminus consistent to the previous observation in the eastern Kenyan population. Parasites possessing a frameshift mutation resulting a product without intracellular Trp-rich (WR) domains were 22/23 in western Kenya and 22/36 in Thailand. More than one copy of surf4.1gene was detected in western Kenya (4/24), but no CNV was found in Thailand (0/36).

    CONCLUSIONS: The authors infer that the high polymorphism of SURFIN4.1Var2 C-terminus in both Kenyan and Thai populations were shaped-up by diversifying selection and maintained by balancing selection. These phenomena were most likely driven by immunological pressure. Whereas the SURFIN4.1Var1 C-terminus is suggested to be under directional selection consistent to the previous report for the eastern Kenyan population. Most western Kenyan isolates possess a frameshift mutation that would limit the expression of SURFIN4.1on the merozoite, but only 60% of Thai isolates possess this frameshift, which would affect the level and type of the selection pressure against this protein as seen in the two extremities of Tajima's D values for Var1 C-terminus between Kenyan and Thai populations. CNV observed in Kenyan isolates may be a consequence of this frameshift mutation to increase benefits on the merozoite surface.

    Matched MeSH terms: Plasmodium falciparum/genetics*
  14. Norahmad NA, Mohd Abd Razak MR, Abdullah NR, Sastu UR, Imwong M, Muniandy PK, et al.
    PLoS One, 2016;11(10):e0165515.
    PMID: 27788228 DOI: 10.1371/journal.pone.0165515
    Chloroquine (CQ) and fansidar (sulphadoxine-pyrimethamine, SP) were widely used for treatment of Plasmodium falciparum for several decades in Malaysia prior to the introduction of Artemisinin-based Combination Therapy (ACT) in 2008. Our previous study in Kalabakan, located in south-east coast of Sabah showed a high prevalence of resistance to CQ and SP, suggesting the use of the treatment may no longer be effective in the area. This study aimed to provide a baseline data of antimalarial drug resistant markers on P. falciparum isolates in Kota Marudu located in the north-east coast of Sabah. Mutations on genes associated with CQ (pfcrt and pfmdr1) and SP (pfdhps and pfdhfr) were assessed by PCR amplification and restriction fragment length polymorphism. Mutations on the kelch13 marker (K13) associated with artemisinin resistance were determined by DNA sequencing technique. The assessment of pfmdr1 copy number variation associated with mefloquine resistant was done by real-time PCR technique. A low prevalence (6.9%) was indicated for both pfcrt K76T and pfmdr1 N86Y mutations. All P. falciparum isolates harboured the pfdhps A437G mutation. Prevalence of pfdhfr gene mutations, S108N and I164L, were 100% and 10.3%, respectively. Combining the different resistant markers, only two isolates were conferred to have CQ and SP treatment failure markers as they contained mutant alleles of pfcrt and pfmdr1 together with quintuple pfdhps/pfdhfr mutation (combination of pfdhps A437G+A581G and pfdhfr C59R+S108N+I164L). All P. falciparum isolates carried single copy number of pfmdr1 and wild type K13 marker. This study has demonstrated a low prevalence of CQ and SP resistance alleles in the study area. Continuous monitoring of antimalarial drug efficacy is warranted and the findings provide information for policy makers in ensuring a proper malaria control.
    Matched MeSH terms: Plasmodium falciparum/genetics*
  15. Chang SP, Kramer KJ, Yamaga KM, Kato A, Case SE, Siddiqui WA
    Exp Parasitol, 1988 Oct;67(1):1-11.
    PMID: 3049134
    The gene encoding the 195,000-Da major merozoite surface antigen (gp195) of the FUP (Uganda-Palo Alto) isolate of Plasmodium falciparum, a strain widely used for monkey vaccination experiments, has been cloned and sequenced. The translated amino acid sequence of the FUP gp195 protein is closely related to the sequences of corresponding proteins of the CAMP (Malaysia) and MAD-20 (Papua New Guinea) isolates and more distantly related to those of the Wellcome (West Africa) and K1 (Thailand) isolates, supporting the proposed allelic dimorphism of gp195 within the parasite population. The prevalence of dimorphic sequences within the gp195 protein suggests that many gp195 epitopes would be group-specific. Despite the extensive differences in amino acid sequence between gp195 proteins of these two groups, the hydropathy profiles of proteins representative of both groups are very similar. The conservation of overall secondary structure shown by the hydropathy profile comparison indicates that gp195 proteins of the various P. falciparum isolates are functionally equivalent. This information on the primary structure of the FUP gp195 protein will enable us to evaluate the possible roles of conserved, group-specific and variable epitopes in immunity to the blood stage of the malaria parasite.
    Matched MeSH terms: Plasmodium falciparum/genetics*
  16. Boush MA, Djibrine MA, Mussa A, Talib M, Maki A, Mohammed A, et al.
    Sci Rep, 2020 07 30;10(1):12822.
    PMID: 32733079 DOI: 10.1038/s41598-020-69756-8
    In remote areas of malaria-endemic countries, rapid diagnostic tests (RDTs) have dramatically improved parasitological confirmation of suspected malaria cases, especially when skilled microscopists are not available. This study was designed to determine the frequency of Plasmodium falciparum isolates with histidine-rich protein 2 (pfhrp2) gene deletion as one of the possible factors contributing to the failure of PfHRP2-based RDTs in detecting malaria. A total of 300 blood samples were collected from several health centres in Nyala City, Western Sudan. The performance of PfHRP2-based RDTs in relation to microscopy was examined and the PCR-confirmed samples were investigated for the presence of pfhrp2 gene. A total of 113 out of 300 patients were P. falciparum positive by microscopy. Among them, 93.81% (106 out of 113) were positives by the PfHRP2 RDTs. Seven isolates were identified as false negative on the basis of the RDTs results. Only one isolate (0.9%; 1/113) potentially has pfhrp2 gene deletion. The sensitivity and specificity of PfHRP2-based RDTs were 93.81% and 100%, respectively. The results provide insights into the pfhrp2 gene deletion amongst P. falciparum population from Sudan. However, further studies with a large and systematic collection from different geographical settings across the country are needed.
    Matched MeSH terms: Plasmodium falciparum/genetics*
  17. Atroosh WM, Lau YL, Snounou G, Azzani M, Al-Mekhlafi HM
    Malar J, 2022 Jan 04;21(1):2.
    PMID: 34983529 DOI: 10.1186/s12936-021-04014-4
    BACKGROUND: Genotyping of the three Plasmodium falciparum polymorphic genes, msp1, msp2 and glurp, has been adopted as a standard strategy to distinguish recrudescence from new infection in drug efficacy clinical trials. However, the suitability of a particular gene is compromised in areas where its allelic variants distribution is significantly skewed, a phenomenon that might occur in isolated parasite populations or in areas of very low transmission. Moreover, observation of amplification bias has diminished the value of glurp as a marker.

    METHODS: The suitability of the polymorphic P. falciparum histidine-rich protein 2 (pfhrp2) gene was assessed to serve as an alternative marker using a PCR-sequencing or a PCR-RFLP protocol for genotyping of samples in drug efficacy clinical trials. The value of pfhrp2 was validated by side-by-side analyses of 5 admission-recrudescence sample pairs from Yemeni malaria patients.

    RESULTS: The outcome of the single pfhrp2 gene discrimination analysis has been found consistent with msp1, msp2 and glurp pool genotyping analysis for the differentiation of recrudescence from new infection.

    CONCLUSION: The findings suggest that under the appropriate circumstances, pfhrp2 can serve as an additional molecular marker for monitoring anti-malarials efficacy. However, its use is restricted to endemic areas where only a minority of P. falciparum parasites lack the pfhrp2 gene.

    Matched MeSH terms: Plasmodium falciparum/genetics*
  18. Rapeah S, Dhaniah M, Nurul AA, Norazmi MN
    Trop Biomed, 2010 Dec;27(3):461-9.
    PMID: 21399587 MyJurnal
    Macrophages are involved in innate immunity against malaria due to their ability to phagocytose infected erythrocytes and produce inflammatory cytokines, which are important for controlling parasite growth during malaria infection. In this study, the ability of a recombinant BCG (rBCG) vaccine expressing the 19-kDa C-terminus of merozoite surface protein-1 (MSP1-C) of Plasmodium falciparum, to stimulate the phagocytic activity and secretion of pro-inflammatory cytokines by the macrophage cell line J774A.1 was measured at varying times. The results demonstrate the ability of the rBCG construct to activate the inflammatory action of macrophages, which is important as a first-line of defence in clearing malaria infections.
    Matched MeSH terms: Plasmodium falciparum/genetics
  19. Lau TY, Sylvi M, William T
    Malar J, 2013;12:445.
    PMID: 24321120 DOI: 10.1186/1475-2875-12-445
    The sulphadoxine/pyrimethamine (SDX/PYR) combination had been chosen to treat uncomplicated falciparum malaria in Malaysia for more than 30 years. Non-silent mutations in dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are responsible for the resistance to pyrimethamine and sulphadoxine, respectively. This study reports the mutational analysis of pfdhfr and pfdhps in single Plasmodium falciparum infection isolates from the interior division of Sabah, Malaysian Borneo.
    Matched MeSH terms: Plasmodium falciparum/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links