Displaying publications 1 - 20 of 170 in total

Abstract:
Sort:
  1. Wong SC, Stoming TA, Efremov GD, Huisman TH
    Hemoglobin, 1989;13(1):1-5.
    PMID: 2703362
    DNA samples from numerous subjects of different racial and ethnic backgrounds, with or without various hemoglobinopathies (classical beta-thalassemia; silent beta-thalassemia, Hb E, sickle cell anemia), were studied for a rearrangement (+ATA; -T) at nucleotide -530 in the 5' flanking region of the beta-globin gene using amplified DNA and 32P-labeled synthetic oligonucleotide probes. The data show that this unusual sequence is a common feature among East-Asians and Blacks (particularly SS patients), and is not associated with mild thalassemic features typical for the silent form of beta-thalassemia, as has been suggested (5).
    Matched MeSH terms: Promoter Regions, Genetic*
  2. Chowdhury MKU, Parveez GKA, Saleh NM
    Plant Cell Rep, 1997 Feb;16(5):277-281.
    PMID: 30727662 DOI: 10.1007/BF01088280
    The efficiency of GUS (β-Glucuronidase) gene expression in embryogenic callus and young leaflets of mature and seedling palm after microprojectile bombardment with five constructs (pEmuGN, pAHC25, pAct1-F4, pGH24 and pBARGUS) was evaluated to identify the most suitable promoter(s) to use in transformation attempts in oil palm. Expression of the GUS gene driven by theEmu, Ubi1, Act1 35S orAdh1 was assayed, both histochemically and fluorometrically, from a total of 200 plates of tissues in eight independent experiments two days after bombardment. A completely randomized experimental design was used for each experiment, and the data analysed by ANOVA and Duncan's Multiple Range Test. The expression level of GUS driven by theEmu orUbi1 promoters was significantly higher than that of the Act], 35S and Adhl promoters in many experiments, and that of theAdhl was significantly lower than those of the other four promoters. Both histochemical and fluorometric data indicate that in embryogenic callus, the expression of theEmu promoter was higher than that of theUbi1 whereas in young leaflets from mature palm the Ubi1 expression was stronger. The performances of the five promoters were also tested in tobacco callus using a fluorometric GUS assay. The activity of the 35S promoter was highest, and significantly different from that of all the other promoters except theEmu, and that of theAct1 promoter was lowest. These results indicate that either theUbil orEmu promoter should facilitate the expression of desired genes in oil palm and aid in development of an efficient stable transformation system.
    Matched MeSH terms: Promoter Regions, Genetic
  3. Lazarev VN, Parfenova TM, Gularyan SK, Misyurina OY, Akopian TA, Govorun VM
    Int J Antimicrob Agents, 2002 Feb;19(2):133-7.
    PMID: 11850166
    As the number of pathogenic microbial strains resistant to different antibiotics increases, amphipathic peptides with antimicrobial activity are promising agents for the therapy of infectious diseases. This work deals with the effect of an amphipathic antimicrobial peptide, melittin, expressed within recombinant plasmid vectors, on infection with urogenital pathogens Chlamydia trachomatis and Mycoplasma hominis in HeLa cell culture. Recombinant plasmid constructs with the melittin gene under the control of the tetracycline-responsive promoter of human cytomegalovirus were obtained. We showed inhibition of C. trachomatis and M. hominis infection after the introduction of recombinant plasmid vectors expressing the melittin gene into the infected cell culture.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  4. Tang K, Ngoi SM, Gwee PC, Chua JM, Lee EJ, Chong SS, et al.
    Pharmacogenetics, 2002 Aug;12(6):437-50.
    PMID: 12172212
    The MDR1 multidrug transporter plays a key role in determining drug bioavailability, and differences in drug response exist amongst different ethnic groups. Numerous studies have identified an association between the MDR1 single nucleotide polymorphism (SNP) exon 26 3435C>T and differences in MDR1 function. We performed a haplotype analysis of the MDR1 gene in three major ethnic groups (Chinese, Malays and Indians) by examining 10 intragenic SNPs. Four were polymorphic in all three ethnic groups: one occurring in the non-coding region and three occurring in coding exons. All three coding SNPs (exon 12 1236C>T, exon 21 2677G>T/A and exon 26 3435C>T) were present in high frequency in each ethnic group, and the derived haplotype profiles exhibited distinct differences between the groups. Fewer haplotypes were observed in the Malays (n = 6) compared to the Chinese (n = 10) and Indians (n = 9). Three major haplotypes (> 10% frequency) were observed in the Malays and Chinese; of these, two were observed in the Indians. Strong linkage disequilibrium (LD) was detected between the three SNPs in all three ethnic groups. The strongest LD was present in the Chinese, followed by Indians and Malays, with the corresponding LD blocks estimated to be approximately 80 kb, 60 kb and 40 kb, respectively. These data strongly support the hypothesis that strong LD between the neutral SNP exon 26 3435C>T and a nearby unobserved causal SNP underlies the observed associations between the neutral SNP and MDR1 functional differences. Furthermore, strong LD between exon 26 3435T and different unobserved causal SNPs in different study populations may provide a plausible explanation for conflicting reports associating the same exon 26 3435T allele with different MDR1 functional changes.
    Matched MeSH terms: Promoter Regions, Genetic
  5. Tee CS, Marziah M, Tan CS, Abdullah MP
    Plant Cell Rep, 2003 Jan;21(5):452-8.
    PMID: 12789448
    Three different morphological callus types, identified as type A, B and C, and tips of in vitro inflorescences were used as target tissues for genetic transformation. Five different DNA plasmids carrying a synthetic green fluorescent protein (gfp) gene driven by different promoters, CaMV 35S, HBT, and Ubi1 were tested for the genetic transformation of Dendrobium Sonia 17. 35S-sgfp-TYG-nos (p35S) with the CaMV 35S promoter showed the highest GFP transient expression rate, while the HBT and Ubi1 promoters showed a relatively lower expression rate in all of the target tissues tested. The highest number of GFP-expressing cells was observed on day 2 post-bombardment, and the number declined gradually over the course of the next 2 weeks. Type A and B callus were found to be the best potential target tissues for genetic transformation.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  6. Rahman RN, Chin JH, Salleh AB, Basri M
    Mol Genet Genomics, 2003 May;269(2):252-60.
    PMID: 12756537
    A Bacillus sphaericus strain (205y) that produces an organic solvent-tolerant lipase was isolated in Port Dickson, Malaysia. The gene for the lipase was recovered from a genomic library and sequenced. Phylogenetic analysis was performed based on an alignment of thirteen microbial lipase sequences obtained from the NCBI database. The analysis suggested that the B. sphaericus lipase gene is a novel gene, as it is distinct from other lipase genes in Families I.4 and I.5 reported so far. Expression in Escherichia coli under the control of the lacZ promoter resulted in an eight-fold increase in enzyme activity after a 3-h induction with 1 mM IPTG. The crude enzyme thus obtained showed a slight (10%) enhancement in activity after a 30-min incubation in 25% (v/v) n-hexane at 37 degrees C, and retained 90% of its activity after a similar period in 25% (v/v) p-xylene.
    Matched MeSH terms: Promoter Regions, Genetic
  7. Chew CH, Samian MR, Najimudin N, Tengku-Muhammad TS
    Biochem Biophys Res Commun, 2003 May 30;305(2):235-43.
    PMID: 12745064
    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcriptional factor that governs many biological processes, including lipid metabolism, inflammation, and atherosclerosis. We demonstrate here the existence of six variants and multiple transcriptional start sites of the 5(') untranslated region (UTR) of hPPARalpha gene, originating from the use of alternative splicing mechanisms and four different promoters. Three new novel exons at the 5(')-untranslated region of human PPARalpha gene were also identified and designated as Exon A, Exon B, and Exon 2b. In addition, 1.2kb promoter fragment which drives the transcription of 2 variants with Exon B (hPPARalpha4 and 6) was successfully cloned and characterised. Sequencing results revealed promoter B did not contain a conservative TATA box within the first 100 nucleotides from transcriptional start site but has several GC-rich regions and putative Sp1 sites. Using luciferase reporter constructs transfected into HepG2 and Hep3B cell lines, promoter B was shown to be functionally active. Basal transcriptional activity was significantly high in the promoter fragment -341/+34, but lower in the region -341/-1147 as compared to the fragment -341/+34, indicating the presence of an element conferring transcriptional activation between positions -341 and +34 or alternatively, the presence of transcriptional repression between positions -341 and -1147 in the promoter B of hPPARalpha.
    Matched MeSH terms: Promoter Regions, Genetic*
  8. Lee AS, Ho GH, Oh PC, Balram C, Ooi LL, Lim DT, et al.
    Hum Mutat, 2003 Aug;22(2):178.
    PMID: 12872263
    The mutation spectrum of the BRCA1 gene among ethnic groups from Asia has not been well studied. We investigated the frequency of mutations in the BRCA1 gene among Malay breast cancer patients from Singapore, independent of family history. By using the protein truncation test (PTT) and direct sequencing, BRCA1 mutations were detected in 6 of 49 (12.2%) unrelated patients. Four novel missense mutations in exon 11, T557A (1788A>G), T582A (1863A>G), N656S (2086A>G) and P684S (2169C>T) were identified in one patient. Two patients had missense mutations in exon 23, V1809A (5545T>C), which has been previously detected in individuals from Central and Eastern Europe. Three unrelated patients had the deleterious 2846insA frameshift mutation in exon 11. Methylation specific PCR (MSP) of the promoter region of the BRCA1 gene detected hypermethylation of tumor DNA in an additional 2 patients. Haplotype analysis using the microsatellite markers D17S855, D17S1323 and D17S1325 revealed a common haplotype for the three unrelated patients and their three relatives with the 2846insA mutation. These findings strongly suggest that the 2846insA mutation, the most common deleterious mutation in this study, may possibly be a founder mutation in breast cancer patients of Malay ethnic background.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  9. Tai ES, Corella D, Deurenberg-Yap M, Cutter J, Chew SK, Tan CE, et al.
    J Nutr, 2003 Nov;133(11):3399-408.
    PMID: 14608050 DOI: 10.1093/jn/133.11.3399
    We have previously reported an interaction between -514C>T polymorphism at the hepatic lipase (HL) gene and dietary fat on high-density lipoprotein-cholesterol (HDL-C) metabolism in a representative sample of white subjects participating in the Framingham Heart Study. Replication of these findings in other populations will provide proof for the relevance and consistency of this marker as a tool for risk assessment and more personalized cardiovascular disease prevention. Therefore, we examined this gene-nutrient interaction in a representative sample of Singaporeans (1324 Chinese, 471 Malays and 375 Asian Indians) whose dietary fat intake was recorded by a validated questionnaire. When no stratification by fat intake was considered, the T allele was associated with higher plasma HDL-C concentrations (P = 0.001), higher triglyceride (TG) concentrations (P = 0.001) and higher HDL-C/TG ratios (P = 0.041). We found a highly significant interaction (P = 0.001) between polymorphism and fat intake in determining TG concentration and the HDL-C/TG ratio (P = 0.001) in the overall sample even after adjustment for potential confounders. Thus, TT subjects showed higher TG concentrations only when fat intake supplied >30% of total energy. This interaction was also found when fat intake was considered as continuous (P = 0.035). Moreover, in the upper tertile of fat intake, TT subjects had 45% more TG than CC individuals (P < 0.01). For HDL-C concentration, the gene-diet interaction was significant (P = 0.015) only in subjects of Indian origin. In conclusion, our results indicate that there are differences in the association of -514C>T polymorphism with plasma lipids according to dietary intake and ethnic background. Specifically, the TT genotype is associated with a more atherogenic lipid profile when subjects consume diets with a fat content > 30%.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  10. Sivalingam SP, Yoon KH, Koh DR, Fong KY
    Tissue Antigens, 2003 Dec;62(6):498-504.
    PMID: 14617033 DOI: 10.1046/j.1399-0039.2003.00137.x
    Rheumatoid arthritis (RA) is a chronic arthritic condition that can lead to deformities and disabilities. Although numerous studies reported the association of human leukocyte antigen (HLA)-DRB1*04 and RA, other genes, e.g. cytokines genes, may contribute towards disease susceptibility. Interleukin-18 (IL-18) is a proinflammatory cytokine postulated to play a role in the acute and chronic inflammatory phases of RA. The IL-18 protein expression seems to be regulated by two single-nucleotide polymorphisms (SNPs) located at positions -607 and -137 in the promoter region of the gene. It is postulated that specific alleles may be associated with susceptibility to the development of RA. In the present study, we described the IL-18 gene promoter region genotypes and combined genotypes (-607/-137) in 106 RA patients and 273 unrelated healthy controls to evaluate the contributions of these alleles to RA predisposition in Chinese, Malays, and Indians. The genotyping were performed using sequence-specific polymerase chain reactions. Rheumatoid factors were assayed by enzyme-linked immunosorbent assay. Biodata were obtained through chart review. The controls had significantly higher frequency of AA genotype at position -607 when compared to RA patients. No significant differences were observed in the distribution of either allelic or genotypic frequencies at position -137. There was no association between the genotypes and the presence of rheumatoid factors. This study did not find evidence of a genetic susceptibility factor but demonstrated the novel finding that the AA genotype at position -607 is associated with a protective effect against development of RA in Chinese individuals. This protection may be mediated through inhibition of cyclic (Adenosine 3', 5'-cyclic monophosphate) AMP-responsive element (CRE)-binding protein by the disruption of the CRE consensus sequence.
    Matched MeSH terms: Promoter Regions, Genetic*
  11. Leow TC, Rahman RN, Basri M, Salleh AB
    Biosci Biotechnol Biochem, 2004 Jan;68(1):96-103.
    PMID: 14745170
    A thermostable extracellular lipase of Geobacillus sp. strain T1 was cloned in a prokaryotic system. Sequence analysis revealed an open reading frame of 1,251 bp in length which codes for a polypeptide of 416 amino acid residues. The polypeptide was composed of a signal peptide (28 amino acids) and a mature protein of 388 amino acids. Instead of Gly, Ala was substituted as the first residue of the conserved pentapeptide Gly-X-Ser-X-Gly. Successful gene expression was obtained with pBAD, pRSET, pET, and pGEX as under the control of araBAD, T7, T7 lac, and tac promoters, respectively. Among them, pGEX had a specific activity of 30.19 Umg(-1) which corresponds to 2927.15 Ug(-1) of wet cells after optimization. The recombinant lipase had an optimum temperature and pH of 65 degrees C and pH 9, respectively. It was stable up to 65 degrees C at pH 7 and active over a wide pH range (pH 6-11). This study presents a rapid cloning and overexpression, aimed at improving the enzyme yield for successful industrial application.
    Matched MeSH terms: Promoter Regions, Genetic
  12. Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, et al.
    Mol Microbiol, 2005 Jan;55(2):469-81.
    PMID: 15659164
    By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense-box RNAs, where the latter only exhibit partial complementarity to RNA targets. The most prominent group of antisense RNAs is transcribed in the opposite orientation to the transposase genes, encoded by insertion elements (transposons). Thus, these antisense RNAs may regulate transposition of insertion elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted to target the 3'-untranslated regions of certain mRNAs. Furthermore, one of the ncRNAs that does not show antisense elements is transcribed from a repeat unit of a cluster of small regularly spaced repeats in S. solfataricus which is potentially involved in replicon partitioning. In conclusion, this is the first report of stably expressed antisense RNAs in an archaeal species and it raises the prospect that antisense-based mechanisms are also used widely in Archaea to regulate gene expression.
    Matched MeSH terms: Promoter Regions, Genetic
  13. Looi CY, D' Silva EC, Seow HF, Rosli R, Ng KP, Chong PP
    FEMS Microbiol Lett, 2005 Aug 15;249(2):283-9.
    PMID: 16006060
    The aims of our research were to investigate the gene expression of the multidrug efflux transporter, CDR1 and the major drug facilitator superfamily transporter, MDR1 gene in azole drug-resistant Candida albicans and Candida glabrata clinical isolates recovered from vaginitis patients; and to identify hotspot mutations that may be present in the C. albicans CaCDR1 gene that could be associated with drug-resistance. The relative expression of the CDR1 and MDR1 transcripts in ketoconazole and clotrimazole-resistant isolates and drug-susceptible ATCC strains were determined by semi-quantitative reverse transcription-polymerase chain reaction. Expression of CaCDR1 transcript was upregulated to varying extents in all three azole-resistant C. albicans isolates studied (1.6-, 3.7- and 3.9-fold) and all three C. glabrata isolates tested (at 1.9-, 2.3- and 2.7-fold). The overexpression level of CaCDR1 in the isolates correlated with the degree of resistance as reflected by the minimum inhibitory concentration (MIC) of the drugs. The messenger RNA for another efflux pump, MDR1, was also overexpressed in one of the azole-resistant C. albicans isolates that overexpressed CDR1. This finding suggests that drug-resistance may involve synergy between energy-dependent drug efflux pumps CDR1p and MDR1p in some but not all isolates. Interestingly, DNA sequence analysis of the promoter region of the CaCDR1 gene revealed several point mutations in the resistant clinical isolates compared to the susceptible isolates at 39, 49 and 151 nucleotides upstream from the ATG start codon. This finding provides new information on point mutations in the promoter region which may be responsible for the overexpression of CDR1 in drug-resistant isolates.
    Matched MeSH terms: Promoter Regions, Genetic
  14. Shen H, Qi L, Tai ES, Chew SK, Tan CE, Ordovas JM
    Obesity (Silver Spring), 2006 Apr;14(4):656-61.
    PMID: 16741267
    A polymorphism in the promoter region of uncoupling protein 2 gene -866G/A has been associated with its expression levels in adipose tissue, the risk of obesity, and metabolic abnormalities. Our purpose was to examine the associations of -866G/A with body fat and the risk of metabolic syndrome in a random sample of 4018 Asians (1858 men and 2160 women) from three ethnic groups (Chinese, Malay, and Indian). The minor allele frequency of -866G/A polymorphism in South Asians was similar to that in whites. After adjustment for covariates including age, cigarette smoking, and physical activity, the -866A/A genotype was associated with higher waist-to-hip ratio as compared with the wild-type genotype in Chinese and Indian men (p = 0.018 and p = 0.046, respectively). Moreover, Indian men with -866A/A genotype had a significantly increased risk of metabolic syndrome as compared with those homozygous for the wild-type (odds ratio, 2.66; 95% confidence interval, 1.21 to 5.88; p = 0.015). Such a risk was mainly caused by the excess presence of hypertriglyceridemia and central obesity. Our findings indicate that the uncoupling protein 2 gene -866G/A polymorphism may increase the risks of central obesity and metabolic syndrome, with greater effects on Asian men.
    Matched MeSH terms: Promoter Regions, Genetic*
  15. Wang B, Ngoi S, Wang J, Chong SS, Lee CG
    Mol. Pharmacol., 2006 Jul;70(1):267-76.
    PMID: 16608921
    The MDR1 multidrug transporter represents one of the better characterized drug transporters that play an important role in protecting the body against xenobiotic insults. Single nucleotide polymorphisms (SNPs) and SNP haplotypes within this gene have been variously associated with differences in MDR1 expression/function, drug response as well as disease susceptibility. Nonetheless, the effect of polymorphisms at the MDR1 promoter region on its promoter activity remains less characterized. Through the examination of approximately 1.5 kilobases of MDR1 promoter region from five populations, including the Chinese, Malays, Indians, European Americans, and African Americans, we identified eight low-frequency SNPs, of which only two were polymorphic in at least four of the five populations examined. The other SNPs are mainly population-specific, the majority of which occur only in the African-American population. Recapitulation of the various combinations of SNP haplotypes in vitro in promoter-reporter assays revealed a few notable trends. The African and European American-specific haplotypes tended to result in enhanced MDR1 promoter activity only in the human embryonic kidney (HEK) 293 cell line. Haplotype GCTAACC, which occurs at variable frequencies in all the populations examined, with Asians having much lower frequencies (<2%) compared with the European Americans/African Americans (>4%), affected MDR1 promoter activity differently in different cell lines. Compared with the commonest haplotype, GCTA-ACC haplotype resulted in a significant decrease in MDR1 promoter activity in HeLa cells (P < 0.05) but a significant increase in the same promoter activity in HEK293 cells (P < 0.05). These results suggest that the MDR1 promoter region is largely invariant but that different haplotypes have differential effects on the MDR1 promoter activity in different cell lines.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  16. Yusoff S, Van Rostenberghe H, Yusoff NM, Talib NA, Ramli N, Ismail NZ, et al.
    Biol. Neonate, 2006;89(3):171-6.
    PMID: 16210851
    Gilbert syndrome is caused by defects in the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene. These mutations differ among different populations and many of them have been found to be genetic risk factors for the development of neonatal jaundice.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  17. Koitabashi T, Vuddhakul V, Radu S, Morigaki T, Asai N, Nakaguchi Y, et al.
    Microbiol. Immunol., 2006;50(2):135-48.
    PMID: 16490932
    Nine Escherichia coli O157: H7/- strains isolated primarily from non-clinical sources in Thailand and Japan carried the stx(2) gene but did not produce Stx2 toxin in a reversed passive latex agglutination (RPLA) assay. A strain (EDL933) bearing a stx(2) phage (933W) was compared to a strain (Thai-12) that was Stx2-negative but contained the stx(2) gene. To study the lack of Stx2 production, the Thai-12 stx(2) gene and its upstream nucleotide sequence were analyzed. The Thai-12 stx(2) coding region was intact and Stx2 was expressed from a cloned stx(2) gene using a plasmid vector and detected using RPLA. A lacZ fusion analysis found the Thai-12 stx(2) promoter non-functional. Because the stx(2) gene is downstream of the late promoter in the stx(2) phage genome, the antitermination activity of Q protein is essential for strong stx(2) transcription. Thai-12 had the q gene highly homologous to that of Phi21 phage but not to the 933W phage. High-level expression of exogenous q genes demonstrated Q antitermination activity was weak in Thai-12. Replication of stx(2) phage was not observed in Stx2-negative strains. The q-stx(2) gene sequence of Thai-12 was well conserved in all Stx2-negative strains. A PCR assay to detect the Thai-12 q-stx(2) sequence demonstrated that 30% of O157 strains from marketed Malaysian beef carried this sequence and they produced little or no Stx2. These results suggest that stx(2)-positive O157 strains that produce little or no Stx2 may be widely distributed in the Asian environment.
    Matched MeSH terms: Promoter Regions, Genetic
  18. Ikryannikova LN, Afanas'ev MV, Akopian TA, Il'ina EN, Kuz'min AV, Larionova EE, et al.
    J Microbiol Methods, 2007 Sep;70(3):395-405.
    PMID: 17602768
    A MALDI TOF MS based minisequencing method has been developed and applied for the analysis of rifampin (RIF)- and isoniazid (INH)-resistant M. tuberculosis strains. Eight genetic markers of RIF resistance-nucleotide polymorphisms located in RRDR of rpoB gene, and three of INH resistance including codon 315 of katG gene and -8 and -15 positions of the promoter region of fabG1-inhA operon were worked out. Based on the analysis of 100 M. tuberculosis strains collected from the Moscow region in 1997-2005 we deduced that 91% of RIF-resistant and 94% of INH-resistant strains can be identified using the technique suggested. The approach is rapid, reliable and allows to reveal the drug resistance of M. tuberculosis strains within 12 h after sample isolation.
    Matched MeSH terms: Promoter Regions, Genetic
  19. Liew CW, Illias RM, Mahadi NM, Najimudin N
    FEMS Microbiol Lett, 2007 Nov;276(1):114-22.
    PMID: 17937670
    A Na(+)/H(+) antiporter gene was isolated from alkaliphilic Bacillus sp. G1. The full-length sequence of the Na(+)/H(+) antiporter gene was obtained using a genome walking method, and designated as g1-nhaC. An ORF preceded by a promoter-like sequence and a Shine-Dalgarno sequence, and followed by a terminator-like sequence was identified. The deduced amino acid sequence consists of 535 amino acids, and a calculated molecular mass of 57 776 Da. g1-nhaC was subsequently cloned into pET22b(+) and expressed in Escherichia coli BL21 (DE3). Recombinant E. coli harboring the g1-nhaC gene was able to grow in modified L medium at various concentrations of NaCl (0.2-2.0 M) at different pH values. The recombinant bacteria grew well in the medium with concentrations of NaCl as high as 1.75 M at pH 8.0-9.0. Minimal growth was observed at 2.0 M NaCl, pH 8.0-9.0. At pH 10, the recombinant bacteria grew well in a medium with a low concentration of NaCl (0.2 M). These results suggested that the g1-NhaC antiporter from Bacillus sp. G1 plays a role in Na(+) extrusion at lower pH values and in pH homeostasis at pH 10 under Na(+)-limiting conditions.
    Matched MeSH terms: Promoter Regions, Genetic
  20. Chew CH, Chew GS, Najimudin N, Tengku-Muhammad TS
    Int J Biochem Cell Biol, 2007;39(10):1975-86.
    PMID: 17616429
    Peroxisome proliferator activated receptor alpha has been implicated as a regulator of acute phase response genes in hepatocytes. Interleukin-6 is widely known as a major cytokine responsible in the regulation of acute phase proteins and, therefore, acute phase response. Unfortunately, to date, very little is understood about the molecular mechanisms by which interleukin-6 regulates the gene expression of peroxisome proliferator activated receptor alpha. Here, we report the molecular mechanisms by which peroxisome proliferator activated receptor alpha was regulated by interleukin-6 in human HepG2 cells. Interleukin-6 was shown to down-regulate the peroxisome proliferator activated receptor alpha gene expression at the level of gene transcription. Functional dissection of human peroxisome proliferator activated receptor alpha promoter B revealed the role of predicted CCAAT/enhancer-binding protein binding site (-164/+34) in mediating the interleukin-6 inhibitory effects on peroxisome proliferator activated receptor alpha mRNA expression and electrophoretic mobility shift assay showed the binding of CCAAT/enhancer-binding protein isoforms to this cis-acting elements was increased in interleukin-6-treated HepG2 cells. Co-transfection experiments, then, demonstrated that CCAAT/enhancer-binding protein beta either in homodimer or heterodimer with CCAAT/enhancer-binding protein alpha and CCAAT/enhancer-binding protein delta plays a predominant role in inhibiting the transcriptional activity of peroxisome proliferator activated receptor alpha promoter B, thus, reducing the peroxisome proliferator activated receptor alpha mRNA expression. These studies, therefore, suggest a novel mechanism for interleukin-6-mediated inhibition of peroxisome proliferator activated receptor alpha gene expression that involves the activation of CCAAT/enhancer-binding protein isoforms with CCAAT/enhancer-binding protein beta may play a major role.
    Matched MeSH terms: Promoter Regions, Genetic/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links