Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Syam S, Bustamam A, Abdullah R, Sukari MA, Hashim NM, Mohan S, et al.
    J Ethnopharmacol, 2014 Apr 28;153(2):435-45.
    PMID: 24607509 DOI: 10.1016/j.jep.2014.02.051
    The fruit hull of Garcinia mangostana Linn. has been used in traditional medicine for treatment of various inflammatory diseases. Hence, this study aims to investigate the in vitro and in vivo anti-inflammatory effect of β mangostin (βM), a major compound present in Garcinia mangostana.
    Matched MeSH terms: Protein Structure, Secondary
  2. Said ZSAM, Arifi FAM, Salleh AB, Rahman RNZRA, Leow ATC, Latip W, et al.
    Int J Biol Macromol, 2019 Apr 15;127:575-584.
    PMID: 30658145 DOI: 10.1016/j.ijbiomac.2019.01.056
    The utilization of organic solvents as reaction media for enzymatic reactions provides numerous industrially attractive advantages. However, an adaptation of enzyme towards organic solvent is unpredictable and not fully understood because of limited information on the organic solvent tolerant enzymes. To understand how the enzyme can adapt to the organic solvent environment, structural and computational approaches were employed. A recombinant elastase from Pseudomonas aeruginosa strain K was an organic solvent tolerant zinc metalloprotease was successfully crystallized and diffracted up to 1.39 Å. Crystal structure of elastase from strain K showed the typical, canonical alpha-beta hydrolase fold consisting of 10-helices (118 residues), 10- β-strands (38 residues) and 142 residues were formed other secondary structure such as loop and coil to whole structure. The elastase from Pseusomonas aeruginosa strain K possess His-140, His-144 and Glu-164 served as a ligand for zinc ion. The conserved catalytic triad was composed of Glu-141, Tyr-155 and His-223. Three-dimensional structure features such as calcium-binding and presence of disulphide-bridge contribute to the stabilizing the elastase structure. Molecular dynamic (MD) simulation of elastase revealed that, amino acid residues located at the surface area and disulphide bridge in Cys-30 to Cys-58 were responsible for enzyme stability in organic solvents.
    Matched MeSH terms: Protein Structure, Secondary
  3. Chin SP, Buckle MJ, Chalmers DK, Yuriev E, Doughty SW
    J Mol Graph Model, 2014 Apr;49:91-8.
    PMID: 24631873 DOI: 10.1016/j.jmgm.2014.02.002
    Structure-based virtual screening offers a good opportunity for the discovery of selective M1 muscarinic acetylcholine receptor (mAChR) agonists for the treatment of Alzheimer's disease. However, no 3-D structure of an M1 mAChR is yet available and the homology models that have been previously reported are only able to identify antagonists in virtual screening experiments. In this study, we generated a homology model of the human M1 mAChR, based on the crystal structure of an M3 mAChR as the template. This initial model was modified, using the agonist-bound crystal structure of a β2-adrenergic receptor as a guide, to give two possible activated structures. The T192 side chain was adjusted in both structures and one of the structures also had the whole of transmembrane (TM) 5 rotated and tilted toward the inner channel of the transmembrane region. The binding sites of all three structures were then refined by induced-fit docking (IFD) with acetylcholine. Virtual screening experiments showed that all three refined models could efficiently differentiate agonists from decoy molecules, with the TM5-modified models also giving good agonist/antagonist selectivity. The whole range of agonists and antagonists was observed to bind within the orthosteric site of the structure obtained by IFD refinement alone, implying that it has inactive state character. In contrast, the two TM5-modified structures were unable to accommodate the antagonists, supporting the proposition that they possess activated state character.
    Matched MeSH terms: Protein Structure, Secondary
  4. Yaacob N, Mohamad Ali MS, Salleh AB, Rahman RNZRA, Leow ATC
    J Mol Graph Model, 2016 07;68:224-235.
    PMID: 27474867 DOI: 10.1016/j.jmgm.2016.07.003
    The utilization of cold active lipases in organic solvents proves an excellent approach for chiral synthesis and modification of fats and oil due to the inherent flexibility of lipases under low water conditions. In order to verify whether this lipase can function as a valuable synthetic catalyst, the mechanism concerning activation of the lid and interacting solvent residues in the presence of organic solvent must be well understood. A new alkaline cold-adapted lipase, AMS8, from Pseudomonas fluorescens was studied for its structural adaptation and flexibility prior to its exposure to non-polar, polar aprotic and protic solvents. Solvents such as ethanol, toluene, DMSO and 2-propanol showed to have good interactions with active sites. Asparagine (Asn) and tyrosine (Tyr) were key residues attracted to solvents because they could form hydrogen bonds. Unlike in other solvents, Phe-18, Tyr-236 and Tyr-318 were predicted to have aromatic-aromatic side-chain interactions with toluene. Non-polar solvent also was found to possess highest energy binding compared to polar solvents. Due to this circumstance, the interaction of toluene and AMS8 lipase was primarily based on hydrophobicity and molecular recognition. The molecular dynamic simulation showed that lid 2 (residues 148-167) was very flexible in toluene and Ca(2+). As a result, lid 2 moves away from the catalytic areas, leaving an opening for better substrate accessibility which promotes protein activation. Only a single lid (lid 2) showed the movement following interactions with toluene, although AMS8 lipase displayed double lids. The secondary conformation of AMS8 lipase that was affected by toluene observed a reduction of helical strands and increased coil structure. Overall, this work shows that cold active lipase, AMS8 exhibits distinguish interfacial activation and stability in the presence of polar and non-polar solvents.
    Matched MeSH terms: Protein Structure, Secondary
  5. Tommy YB, Lim TS, Noordin R, Saadatnia G, Choong YS
    BMC Struct Biol, 2012 Nov 27;12:30.
    PMID: 23181504 DOI: 10.1186/1472-6807-12-30
    BACKGROUND: Toxoplasma gondii is an intracellular coccidian parasite that causes toxoplasmosis. It was estimated that more than one third of the world population is infected by T. gondii, and the disease is critical in fetuses and immunosuppressed patients. Thus, early detection is crucial for disease diagnosis and therapy. However, the current available toxoplasmosis diagnostic tests vary in their accuracy and the better ones are costly.

    RESULTS: An earlier published work discovered a highly antigenic 12 kDa excretory-secretory (ES) protein of T. gondii which may potentially be used for the development of an antigen detection test for toxoplasmosis. However, the three-dimensional structure of the protein is unknown. Since epitope identification is important prior to designing of a specific antibody for an antigen-detection based diagnostic test, the structural elucidation of this protein is essential. In this study, we constructed a three dimensional model of the 12 kDa ES protein. The built structure possesses a thioredoxin backbone which consists of four α-helices flanking five β-strands at the center. Three potential epitopes (6-8 residues) which can be combined into one "single" epitope have been identified from the built structure as the most potential antibody binding site.

    CONCLUSION: Together with specific antibody design, this work could contribute towards future development of an antigen detection test for toxoplasmosis.

    Matched MeSH terms: Protein Structure, Secondary
  6. Khor BY, Tye GJ, Lim TS, Noordin R, Choong YS
    Int J Mol Sci, 2014 Jun 19;15(6):11082-99.
    PMID: 24950179 DOI: 10.3390/ijms150611082
    Brugia malayi is a filarial nematode, which causes lymphatic filariasis in humans. In 1995, the disease has been identified by the World Health Organization (WHO) as one of the second leading causes of permanent and long-term disability and thus it is targeted for elimination by year 2020. Therefore, accurate filariasis diagnosis is important for management and elimination programs. A recombinant antigen (BmR1) from the Bm17DIII gene product was used for antibody-based filariasis diagnosis in "Brugia Rapid". However, the structure and dynamics of BmR1 protein is yet to be elucidated. Here we study the three dimensional structure and dynamics of BmR1 protein using comparative modeling, threading and ab initio protein structure prediction. The best predicted structure obtained via an ab initio method (Rosetta) was further refined and minimized. A total of 5 ns molecular dynamics simulation were performed to investigate the packing of the protein. Here we also identified three epitopes as potential antibody binding sites from the molecular dynamics average structure. The structure and epitopes obtained from this study can be used to design a binder specific against BmR1, thus aiding future development of antigen-based filariasis diagnostics to complement the current diagnostics.
    Matched MeSH terms: Protein Structure, Secondary
  7. Feng Z, Hu X, Jiang Z, Song H, Ashraf MA
    Saudi J Biol Sci, 2016 Mar;23(2):189-97.
    PMID: 26980999 DOI: 10.1016/j.sjbs.2015.10.008
    The recognition of protein folds is an important step in the prediction of protein structure and function. Recently, an increasing number of researchers have sought to improve the methods for protein fold recognition. Following the construction of a dataset consisting of 27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the construction of new datasets have improved for the prediction of protein folds. In this study, we reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values of the increment of diversity, average chemical shifts of secondary structure elements and secondary structure motifs as feature parameters in the recognition of multi-class protein folds. With the combined feature vector as the input parameter for the Random Forests algorithm and ensemble classification strategy, we propose a novel method to identify the 76 protein fold classes. The overall accuracy of the test dataset using an independent test was 66.69%; when the training and test sets were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was further used to predict the test dataset and the corresponding structural classification of the first 27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively. Moreover, when the training set and test sets were combined, the accuracy using 5-fold cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results using the 27-protein fold class dataset constructed by Ding and Dubchak.
    Matched MeSH terms: Protein Structure, Secondary
  8. Cao H, Ng MCK, Jusoh SA, Tai HK, Siu SWI
    J Comput Aided Mol Des, 2017 Sep;31(9):855-865.
    PMID: 28864946 DOI: 10.1007/s10822-017-0047-0
    [Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM . Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
    Matched MeSH terms: Protein Structure, Secondary
  9. Higashi SL, Rozi N, Hanifah SA, Ikeda M
    Int J Mol Sci, 2020 Dec 12;21(24).
    PMID: 33322664 DOI: 10.3390/ijms21249458
    Supramolecular architectures that are built artificially from biomolecules, such as nucleic acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have attracted increased attention in molecular science research fields. The engineering of nanostructures with such biomolecule-based supramolecular architectures could offer an opportunity for the development of biocompatible supramolecular (nano)materials. In this review, we highlighted a variety of supramolecular architectures that were assembled from both nucleic acids and peptides through the non-covalent interactions between them or the covalently conjugated molecular hybrids between them.
    Matched MeSH terms: Protein Structure, Secondary
  10. Teh BA, Choi SB, Musa N, Ling FL, Cun ST, Salleh AB, et al.
    BMC Struct Biol, 2014;14:7.
    PMID: 24499172 DOI: 10.1186/1472-6807-14-7
    Klebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients. Medical inflictions by the pathogen can range from respiratory and urinary tract infections, septicemia and primarily, pneumonia. As more K. pneumoniae strains are becoming highly resistant to various antibiotics, treatment of this bacterium has been rendered more difficult. This situation, as a consequence, poses a threat to public health. Hence, identification of possible novel drug targets against this opportunistic pathogen need to be undertaken. In the complete genome sequence of K. pneumoniae MGH 78578, approximately one-fourth of the genome encodes for hypothetical proteins (HPs). Due to their low homology and relatedness to other known proteins, HPs may serve as potential, new drug targets.
    Matched MeSH terms: Protein Structure, Secondary
  11. Mohammadi S, Parvizpour S, Razmara J, Abu Bakar FD, Illias RM, Mahadi NM, et al.
    Interdiscip Sci, 2018 Mar;10(1):157-168.
    PMID: 27475956 DOI: 10.1007/s12539-016-0180-9
    We report a detailed structural analysis of the psychrophilic exo-β-1,3-glucanase (GaExg55) from Glaciozyma antarctica PI12. This study elucidates the structural basis of exo-1,3-β-1,3-glucanase from this psychrophilic yeast. The structural prediction of GaExg55 remains a challenge because of its low sequence identity (37 %). A 3D model was constructed for GaExg55. Threading approach was employed to determine a suitable template and generate optimal target-template alignment for establishing the model using MODELLER9v15. The primary sequence analysis of GaExg55 with other mesophilic exo-1,3-β-glucanases indicated that an increased flexibility conferred to the enzyme by a set of amino acids substitutions in the surface and loop regions of GaExg55, thereby facilitating its structure to cold adaptation. A comparison of GaExg55 with other mesophilic exo-β-1,3-glucanases proposed that the catalytic activity and structural flexibility at cold environment were attained through a reduced amount of hydrogen bonds and salt bridges, as well as an increased exposure of the hydrophobic side chains to the solvent. A molecular dynamics simulation was also performed using GROMACS software to evaluate the stability of the GaExg55 structure at varying low temperatures. The simulation result confirmed the above findings for cold adaptation of the psychrophilic GaExg55. Furthermore, the structural analysis of GaExg55 with large catalytic cleft and wide active site pocket confirmed the high activity of GaExg55 to hydrolyze polysaccharide substrates.
    Matched MeSH terms: Protein Structure, Secondary
  12. Yap ML, Klose T, Urakami A, Hasan SS, Akahata W, Rossmann MG
    Proc Natl Acad Sci U S A, 2017 12 26;114(52):13703-13707.
    PMID: 29203665 DOI: 10.1073/pnas.1713166114
    Cleavage of the alphavirus precursor glycoprotein p62 into the E2 and E3 glycoproteins before assembly with the nucleocapsid is the key to producing fusion-competent mature spikes on alphaviruses. Here we present a cryo-EM, 6.8-Å resolution structure of an "immature" Chikungunya virus in which the cleavage site has been mutated to inhibit proteolysis. The spikes in the immature virus have a larger radius and are less compact than in the mature virus. Furthermore, domains B on the E2 glycoproteins have less freedom of movement in the immature virus, keeping the fusion loops protected under domain B. In addition, the nucleocapsid of the immature virus is more compact than in the mature virus, protecting a conserved ribosome-binding site in the capsid protein from exposure. These differences suggest that the posttranslational processing of the spikes and nucleocapsid is necessary to produce infectious virus.
    Matched MeSH terms: Protein Structure, Secondary
  13. Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM
    J Mol Model, 2015 Mar;21(3):63.
    PMID: 25721655 DOI: 10.1007/s00894-015-2617-1
    Here, we present a novel psychrophilic β-glucanase from Glaciozyma antarctica PI12 yeast that has been structurally modeled and analyzed in detail. To our knowledge, this is the first attempt to model a psychrophilic laminarinase from yeast. Because of the low sequence identity (<40%), a threading method was applied to predict a 3D structure of the enzyme using the MODELLER9v12 program. The results of a comparative study using other mesophilic, thermophilic, and hyperthermophilic laminarinases indicated several amino acid substitutions on the surface of psychrophilic laminarinase that totally increased the flexibility of its structure for efficient catalytic reactions at low temperatures. Whereas several structural factors in the overall structure can explain the weak thermal stability, this research suggests that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through existence of longer loops and shorter or broken helices and strands, an increase in the number of aromatic and hydrophobic residues, a reduction in the number of hydrogen bonds and salt bridges, a higher total solvent accessible surface area, and an increase in the exposure of the hydrophobic side chains to the solvent. The results of comparative molecular dynamics simulation and principal component analysis confirmed the above strategies adopted by psychrophilic laminarinase to increase its catalytic efficiency and structural flexibility to be active at cold temperature.
    Matched MeSH terms: Protein Structure, Secondary
  14. Teh AH, Sim PF, Hisano T
    Biochem Biophys Res Commun, 2020 12 10;533(3):257-261.
    PMID: 33010888 DOI: 10.1016/j.bbrc.2020.09.064
    The alginate lyase AlyQ from Persicobacter sp. CCB-QB2 is a three-domained enzyme with a carbohydrate-binding module (CBM) from family 32. The CBM32 domain, AlyQB, binds enzymatically cleaved but not intact alginate. Co-crystallisation of AlyQB with the cleaved alginate reveals that it binds to the 4,5-unsaturated mannuronic acid of the non-reducing end. The binding pocket contains a conserved R248 that interacts with the sugar's carboxyl group, as well as an invariant W303 that stacks against the unsaturated pyranose ring. Targeting specifically the non-reducing end is more efficient than the reducing end since the latter consists of a mixture of mannuronic acid and guluronic acid. AlyQB also seems unable to bind these two saturated sugars as they contain OH groups that will clash with the pocket. Docking analysis of YeCBM32, which binds oligogalacturonic acid, shows that the stacking of the pyranose ring is shifted in order to accommodate the sugar's axial C1-OH, and its R69 is accordingly elevated to bind the sugar's carboxyl group. Unlike AlyQB, YeCBM32's binding pocket is able to accommodate both saturated and unsaturated galacturonic acid.
    Matched MeSH terms: Protein Structure, Secondary
  15. Choong YS, Lim TS, Chew AL, Aziah I, Ismail A
    J Mol Graph Model, 2011 Apr;29(6):834-42.
    PMID: 21371926 DOI: 10.1016/j.jmgm.2011.01.008
    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test.
    Matched MeSH terms: Protein Structure, Secondary
  16. Chia SL, Tan WS, Shaari K, Abdul Rahman N, Yusoff K, Satyanarayanajois SD
    Peptides, 2006 Jun;27(6):1217-25.
    PMID: 16377031
    A peptide with the sequence CTLTTKLYC has previously been identified to inhibit the propagation of Newcastle disease virus (NDV) in embryonated chicken eggs and tissue culture. NDV has been classified into two main groups: the velogenic group, and mesogenic with lentogenic strains as the other group based on its dissociation constants. In this study the peptide, CTLTTKLYC, displayed on the pIII protein of a filamentous M13 phage was synthesized and mutated in order to identify the amino acid residues involved in the interactions with NDV. Mutations of C1 and K6 to A1 and A6 did not affect the binding significantly, but substitution of Y8 with A8 dramatically reduced the interaction. This suggests that Y8 plays an important role in the peptide-virus interaction. The three-dimensional structure of the peptide was determined using circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular modeling. The peptide exhibited two possible conformers. One that consists of consecutive beta-turns around T2-L3-T4-T5 and K6-L7-Y8-C9. The other conformer exhibited a beta-hairpin bend type of structure with a bend around L3-T4-T5-K6.
    Matched MeSH terms: Protein Structure, Secondary
  17. Shah SH, Kar RK, Asmawi AA, Rahman MB, Murad AM, Mahadi NM, et al.
    PLoS One, 2012;7(11):e49788.
    PMID: 23209600 DOI: 10.1371/journal.pone.0049788
    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
    Matched MeSH terms: Protein Structure, Secondary
  18. Muhamad A, Ho KL, Rahman MB, Uhrín D, Tan WS
    Chem Biol Drug Des, 2013 Jun;81(6):784-94.
    PMID: 23405984 DOI: 10.1111/cbdd.12120
    A specific ligand targeting the immunodominant region of hepatitis B virus is desired in neutralizing the infectivity of the virus. In a previous study, a disulfide constrained cyclic peptide cyclo S(1) ,S(9) Cys-Glu-Thr-Gly-Ala-Lys-Pro-His-Cys (S(1) , S(9) -cyclo-CETGAKPHC) was isolated from a phage displayed cyclic peptide library using an affinity selection method against hepatitis B surface antigen. The cyclic peptide binds tightly to hepatitis B surface antigen with a relative dissociation constant (KD (rel) ) of 2.9 nm. The binding site of the peptide was located at the immunodominant region on hepatitis B surface antigen. Consequently, this study was aimed to elucidate the structure of the cyclic peptide and its interaction with hepatitis B surface antigen in silico. The solution structure of this cyclic peptide was solved using (1) H, (13) C, and (15) N NMR spectroscopy and molecular dynamics simulations with NMR-derived distance and torsion angle restraints. The cyclic peptide adopted two distinct conformations due to the isomerization of the Pro residue with one structured region in the ETGA sequence. Docking studies of the peptide ensemble with a model structure of hepatitis B surface antigen revealed that the cyclic peptide can potentially be developed as a therapeutic drug that inhibits the virus-host interactions.
    Matched MeSH terms: Protein Structure, Secondary
  19. Wahab HA, Ahmad Khairudin NB, Samian MR, Najimudin N
    BMC Struct Biol, 2006;6:23.
    PMID: 17076907
    Polyhydroxyalkanoates (PHA), are biodegradable polyesters derived from many microorganisms such as the pseudomonads. These polyesters are in great demand especially in the packaging industries, the medical line as well as the paint industries. The enzyme responsible in catalyzing the formation of PHA is PHA synthase. Due to the limited structural information, its functional properties including catalysis are lacking. Therefore, this study seeks to investigate the structural properties as well as its catalytic mechanism by predicting the three-dimensional (3D) model of the Type II Pseudomonas sp. USM 4-55 PHA synthase 1 (PhaC1P.sp USM 4-55).
    Matched MeSH terms: Protein Structure, Secondary
  20. Fotoohifiroozabadi S, Mohamad MS, Deris S
    J Bioinform Comput Biol, 2017 Apr;15(2):1750004.
    PMID: 28274174 DOI: 10.1142/S0219720017500044
    Protein structure alignment and comparisons that are based on an alphabetical demonstration of protein structure are more simple to run with faster evaluation processes; thus, their accuracy is not as reliable as three-dimension (3D)-based tools. As a 1D method candidate, TS-AMIR used the alphabetic demonstration of secondary-structure elements (SSE) of proteins and compared the assigned letters to each SSE using the [Formula: see text]-gram method. Although the results were comparable to those obtained via geometrical methods, the SSE length and accuracy of adjacency between SSEs were not considered in the comparison process. Therefore, to obtain further information on accuracy of adjacency between SSE vectors, the new approach of assigning text to vectors was adopted according to the spherical coordinate system in the present study. Moreover, dynamic programming was applied in order to account for the length of SSE vectors. Five common datasets were selected for method evaluation. The first three datasets were small, but difficult to align, and the remaining two datasets were used to compare the capability of the proposed method with that of other methods on a large protein dataset. The results showed that the proposed method, as a text-based alignment approach, obtained results comparable to both 1D and 3D methods. It outperformed 1D methods in terms of accuracy and 3D methods in terms of runtime.
    Matched MeSH terms: Protein Structure, Secondary
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links