Displaying publications 1 - 20 of 286 in total

Abstract:
Sort:
  1. Abd-Jamil J, Cheah CY, AbuBakar S
    Protein Eng. Des. Sel., 2008 Oct;21(10):605-11.
    PMID: 18669522 DOI: 10.1093/protein/gzn041
    A method to map the specific site on dengue virus envelope protein (E) that interacts with cells and a neutralizing antibody is developed using serially truncated dengue virus type 2 (DENV-2) E displayed on M13 phages as recombinant E-g3p fusion proteins. Recombinant phages displaying the truncated E consisting of amino acids 297-423 (EB2) and amino acids 379-423 (EB4) were neutralized by DENV-2 patient sera and the DENV-2 E-specific 3H5-1 monoclonal antibodies suggesting that the phages retained the DENV-2 E antigenic properties. The EB4 followed by EB2 recombinant phages bound the most to human monocytes (THP-1), African green monkey kidney (Vero) cells, mosquito (C6/36) cells, ScFv specific against E and C6/36 cell proteins. Two potential cell attachment sites were mapped to loop I (amino acids 297 to 312) and loop II (amino acids 379-385) of the DENV-2 E using the phage-displayed truncated DENV-2 E fragments and by the analysis of the E structure. Loop II was present only in EB4 recombinant phages. There was no competition for binding to C6/36 cell proteins between EB2 and EB4 phages. Loop I and loop II are similar to the sub-complex specific and type-specific neutralizing monoclonal antibody binding sites, respectively. Hence, it is proposed that binding and entry of DENV involves the interaction of loop I to cell surface glycosaminoglycan-motif and a subsequent highly specific interaction involving loop II with other cell proteins. The phage displayed truncated DENV-2 E is a powerful and useful method for the direct determination of DENV-2 E cell binding sites.
    Matched MeSH terms: Recombinant Fusion Proteins/immunology; Viral Envelope Proteins/immunology
  2. AbuBakar S, Azmi A, Mohamed-Saad N, Shafee N, Chee HY
    Malays J Pathol, 1997 Jun;19(1):41-51.
    PMID: 10879241
    The present study was undertaken to investigate the antibody responses of dengue fever (DF) patients to specific dengue virus proteins. Partially purified dengue 2 New Guinea C (NGC) strain virus was used as antigen. Under the present experimental protocols, it was observed that almost all DF patients' sera had detectable presence of antibodies which recognize the dengue 2 envelope (E) protein. The convalescent-phase sera especially had significant detectable IgG, IgM and IgE against the protein. In addition, IgGs specific against the NS1 dimer and PrM were also detected. Antibody against the core (C) protein, however, was not detectable in any of the DF patients' sera. The substantial presence of IgG against the PrM in the convalescent-phase sera, and the presence of IgE specific for the E, reflect the potential importance of these antibody responses in the pathogenesis of dengue.
    Matched MeSH terms: Viral Envelope Proteins/immunology*; Viral Nonstructural Proteins/immunology*
  3. Abubakar S, Azila A, Suzana M, Chang LY
    Malays J Pathol, 2002 Jun;24(1):29-36.
    PMID: 16329553
    At least three major antigenic dengue 2 virus proteins were recognized by pooled dengue fever patients' sera in infected Aedes albopictus (C6/36) mosquito cells. Dengue virus envelope (E), premembrane (PrM) and non-structural protein 1 (NS 1) dimer were detected beginning on day 3 postinfection in both the cell membrane and cytosolic fractions. Using the patients' sera, the presence of antigenic intermediate core protein (C)-PrM and NS1-non-structural protein 2a (NS2a) in the cytoplasmic fraction of dengue 2 virus infected cells was revealed. The presence of a approximately 92 and approximately 84 kDa NS 1 dimer in the membrane (NS 1m) and cytosolic (NS 1c) fractions of C6/36 cells, respectively, was also recognized. Using individual patient's serum, it was further confirmed that all patients' sera contained antibodies that specifically recognized E, NS 1 and PrM present in the dengue 2 virus-infected cell membrane fractions, suggesting that these glycosylated virus proteins were the main antigenic proteins recognized in vivo. Detection of dengue 2 virus C antibody in some patients further suggested that C could be antigenic if presented in vivo.
    Matched MeSH terms: Viral Core Proteins/immunology; Viral Envelope Proteins/immunology; Viral Proteins/immunology*; Viral Nonstructural Proteins/immunology
  4. Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, et al.
    Virology, 1995 Jan 10;206(1):49-56.
    PMID: 7530394
    Previous studies have found Kunjin (KUN) virus isolates from within Australia to be genetically homogenous and that the envelope protein of the type strain (MRM61C) was unglycosylated and lacked a potential glycosylation site. We investigated the extent of antigenic variation between KUN virus isolates from Australia and Sarawak using an immunoperoxidase assay and a panel of six monoclonal antibodies. The glycosylation status of the E protein of each virus was also determined by N glycosidase F (PNGase F) digestion and limited sequence analysis. The results showed that KUN viruses isolated within Australia oscillated between three antigenic types defined by two epitopes whose expression was influenced by passage history and host cell type. In contrast an isolate from Sarawak formed a stable antigenic type that was not influenced by passage history and was distinct from all Australian isolates. PNGase F digestions of KUN isolates indicated that 19 of the 33 viruses possessed a glycosylated E protein. Nucleotide sequence of the 5' third of the E gene of selected KUN isolates revealed that a single base change in PNGase F sensitive strains changed the tripeptide N-Y-F (amino acids 154-156 of the published sequence) to the potential glycosylation site N-Y-S. Further analysis revealed that passage history also had a significant influence on glycosylation.
    Matched MeSH terms: Viral Envelope Proteins/immunology
  5. Ahmad AL, Low SC, Shukor SR, Ismail A
    J Immunoassay Immunochem, 2012 Jan;33(1):48-58.
    PMID: 22181820 DOI: 10.1080/15321819.2011.591479
    This study was aimed at gaining a quantitative understanding of the effect of protein quantity and membrane pore structure on protein immobilization. The concentration of immobilized protein was measured by staining with Ponceau S and measuring its color intensity. In this study, both membrane morphology and the quantity of deposited protein significantly influenced the quantity of protein immobilization on the membrane surface. The sharpness and intensity of the red protein spots varied depending on the membrane pore structure, indicating a dependence of protein immobilization on this factor. Membranes with smaller pores resulted in a higher color density, corresponding to enhanced protein immobilization and an increased assay sensitivity level. An increased of immobilized volume has a significant jagged outline on the protein spot but, conversely, no difference in binding capacity.
    Matched MeSH terms: Immobilized Proteins/immunology
  6. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M
    Clin. Dev. Immunol., 2012;2012:980250.
    PMID: 22474489 DOI: 10.1155/2012/980250
    To date, generation of single-chain fragment variable (scFv) has become an established technique used to produce a completely functional antigen-binding fragment in bacterial systems. The advances in antibody engineering have now facilitated a more efficient and generally applicable method to produce Fv fragments. Basically, scFv antibodies produced from phage display can be genetically fused to the marker proteins, such as fluorescent proteins or alkaline phosphatase. These bifunctional proteins having both antigen-binding capacity and marker activity can be obtained from transformed bacteria and used for one-step immunodetection of biological agents. Alternatively, antibody fragments could also be applied in the construction of immunotoxins, therapeutic gene delivery, and anticancer intrabodies for therapeutic purposes. This paper provides an overview of the current studies on the principle, generation, and application of scFv. The potential of scFv in breast cancer research is also discussed in this paper.
    Matched MeSH terms: Recombinant Fusion Proteins/immunology
  7. Ahola T, Couderc T, Courderc T, Ng LF, Hallengärd D, Powers A, et al.
    Vector Borne Zoonotic Dis, 2015 Apr;15(4):250-7.
    PMID: 25897811 DOI: 10.1089/vbz.2014.1681
    Currently, there are no licensed vaccines or therapies available against chikungunya virus (CHIKV), and these were subjects discussed during a CHIKV meeting recently organized in Langkawi, Malaysia. In this review, we chart the approaches taken in both areas. Because of a sharp increase in new data in these fields, the present paper is complementary to previous reviews by Weaver et al. in 2012 and Kaur and Chu in 2013 . The most promising antivirals so far discovered are reviewed, with a special focus on the virus-encoded replication proteins as potential targets. Within the vaccines in development, our review emphasizes the various strategies in parallel development that are unique in the vaccine field against a single disease.
    Matched MeSH terms: Viral Proteins/immunology
  8. Al-Joudi FS, Iskandar ZA
    Med J Malaysia, 2006 Aug;61(3):302-6.
    PMID: 17240580 MyJurnal
    Autoantibodies to survivin have been reported in lung cancers and in gastrointestinal cancers. A few reports have also described a low prevalence of autoantibodies to survivin and at low titres in the sera of breast cancer patients with no implications for their clinical usefulness. This study was designed to re-examine the prevalence and the clinical correlations of autoantibodies to the tumour protein survivin, in the sera of patients with infiltrating ductal carcinoma of the breast using an ELISA assay. In spite of the low prevalence of autoantibodies to survivin (7%, n = 57), their presence was associated with grade III tumours, with tumour sizes exceeding 10cm, with axillary lymph nodal involvement and with metastases. Moreover, all the autoantibody-positive cases were estrogen and progesterone receptors negative. Furthermore, all the autoantibody-positive cases expressed survivin with high scores.
    Matched MeSH terms: Microtubule-Associated Proteins/immunology*; Neoplasm Proteins/immunology*
  9. AlMatar M, Makky EA, AlMandeal H, Eker E, Kayar B, Var I, et al.
    Curr Mol Pharmacol, 2019;12(2):83-104.
    PMID: 30474542 DOI: 10.2174/1874467212666181126151948
    BACKGROUND: Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial.

    OBJECTIVE: The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.

    Matched MeSH terms: Bacterial Proteins/immunology; Recombinant Fusion Proteins/immunology
  10. Allwood EM, Logue CA, Hafner GJ, Ketheesan N, Norton RE, Peak IR, et al.
    FEMS Immunol. Med. Microbiol., 2008 Oct;54(1):144-53.
    PMID: 18657105 DOI: 10.1111/j.1574-695X.2008.00464.x
    Burkholderia pseudomallei, the causative agent of melioidosis, is endemic to Southeast Asia and northern Australia. Clinical manifestations of the disease are diverse, ranging from chronic localized infection to acute septicaemia, with death occurring within 24-48 h after the onset of symptoms. Definitive diagnosis of melioidosis involves bacterial culture and identification, with results obtained within 3-4 days. This delayed diagnosis is a major contributing factor to high mortality rates. Rapid diagnosis is vital for successful management of the disease. This study describes the purification and evaluation of three recombinant antigenic proteins, BPSL0972, BipD and OmpA from B. pseudomallei 08, for their potential in the serodiagnosis of melioidosis using an indirect enzyme-linked immunosorbent assay (ELISA) method. The recombinant proteins were evaluated using 74 serum samples from culture-confirmed melioidosis patients from Malaysia, Thailand and Australia. In addition, 62 nonmelioidosis controls consisting of serum samples from clinically suspected melioidosis patients (n=20) and from healthy blood donors from an endemic region (n=18) and a nonendemic region (n=24) were included. The indirect ELISAs using BipD and BPSL0972 as antigens demonstrated poor to moderate sensitivities (42% and 51%, respectively) but good specificity (both 100%). In contrast, the indirect ELISA using OmpA as an antigen achieved 95% sensitivity and 98% specificity. These results highlight the potential for OmpA to be used in the serodiagnosis of melioidosis in an endemic area.
    Matched MeSH terms: Bacterial Proteins/immunology
  11. Ambily R, Mini M, Siju J, Vamshikrishna S, Abhinay G, Gleeja VL, et al.
    Trop Biomed, 2019 Sep 01;36(3):654-663.
    PMID: 33597487
    A study was undertaken to evaluate the relevance of detecting IgM and IgG antibodies in diagnosis of canine leptospirosis in Kerala, a southern state of India, which is endemic for the disease. A total of 205 blood (35 from healthy vaccinated, 30 from healthy unvaccinated and 140 from diseased dogs) and 151 urine samples (11 from healthy vaccinated and 140 from diseased dogs) were collected from three districts of Kerala, Thrissur, Palakkad and Kozhikode with high incidence of leptospirosis. Recombinant LipL41 protein was used as antigen and IgG and IgM based ELISAs were standardized. The results were compared with the gold standard test, microscopic agglutination test (MAT). The MAT positive samples (146 samples) were divided into those having titre >1:800 and those between 1:100 and 1:400 in view that the former constituted the acute cases. It was found that IgM ELISA was more specific and sensitive in detecting acute cases (MAT >1:800) whereas IgG ELISA was less specific. In case of seroprevalence studies (MAT titre 1:100 to 1: 400), IgG ELISA was found to be more sensitive and specific than IgM ELISA. Receiver operating characteristic curves when plotted, revealed the accuracy of IgM ELISA in acute leptospirosis. Many samples were positive for both IgG and IgM antibodies. Polymerase Chain Reaction (PCR) targeting lipl41 gene was standardized and urine and blood samples from the same dogs were tested. PCR was found to be the specific test for the early detection of leptospires in blood even before seroconversion. However, PCR analysis of the urine samples was found to be insensitive. Hence, it can be concluded that the diagnostic strategies should be modified, and a combination of serological and molecular tests is recommended in endemic areas rather than simple detection of IgM or IgG antibodies, for the early detection of acute clinical cases of leptospirosis.
    Matched MeSH terms: Recombinant Proteins/immunology
  12. Amerizadeh A, Khoo BY, Teh AY, Golkar M, Abdul Karim IZ, Osman S, et al.
    BMC Infect Dis, 2013;13:287.
    PMID: 23800344 DOI: 10.1186/1471-2334-13-287
    Toxoplasma gondii is an obligate intracellular zoonotic parasite of the phylum Apicomplexa which infects a wide range of warm-blooded animals, including humans. In this study in-vivo induced antigens of this parasite was investigated using in-vivo induced antigen technology (IVIAT) and pooled sera from patients with serological evidence of acute infection.
    Matched MeSH terms: Recombinant Proteins/immunology
  13. Amin Nordin FD, Mohd Khalid MKN, Abdul Aziz SM, Mohamad Bakri NA, Ahmad Ridzuan SN, Abdul Jalil J, et al.
    J Clin Lab Anal, 2020 Jun;34(6):e23254.
    PMID: 32141626 DOI: 10.1002/jcla.23254
    BACKGROUND: Serum protein electrophoresis (SPE) is a widely used laboratory technique to diagnose patients with multiple myeloma (MM) and other disorders related to serum protein. In patients with MM, abnormal monoclonal protein can be detected by SPE and further characterized using immunofixation electrophoresis (IFE). There are several semi-automated agarose gel-based systems available commercially for SPE and IFE. In this study, we sought to evaluate the analytical performance of fully automated EasyFix G26 (EFG26) and semi-automated HYDRASYS 2 SCAN (H2SCAN) for both SPE and IFE.

    METHODS: Both instruments were operated according to manufacturer's instructions. Samples used include a commercially available normal control serum (NCS) and patients' specimens. The following were evaluated: precision and comparison studies for SPE, and reproducibility and comparison studies for IFE. Statistical analyses were performed using Microsoft Excel.

    RESULTS: For SPE repeatability study, our results showed that EFG26 has higher coefficient of variation (%CV) compared with H2SCAN for both samples except for monoclonal component with %CV of 0.97% and 1.18%, respectively. Similar results were obtained for SPE reproducibility study except for alpha-1 (4.16%) and beta (3.13%) fractions for NCS, and beta fractions (5.36%) for monoclonal sample. Subsequently, reproducibility for IFE was 100% for both instruments. Values for correlation coefficients between both instruments ranged from 0.91 to 0.98 for the five classic bands.

    CONCLUSION: Both instruments demonstrated good analytical performance characterized by high precision, reproducibility and correlation.

    Matched MeSH terms: Blood Proteins/immunology
  14. Anirudhan A, Okomoda VT, Mimi Iryani MT, Andriani Y, Abd Wahid ME, Tan MP, et al.
    Fish Shellfish Immunol, 2021 Feb;109:97-105.
    PMID: 33352338 DOI: 10.1016/j.fsi.2020.12.011
    Plants and herbal extracts are indispensable for controlling the spread of disease-causing bacteria, including those that infect aquatic organisms used in aquaculture. The use of plant or herbal extract is expected to be safe for aquatic animals and less harmful to the environment, as opposed to conventional therapeutic alternatives such as antibiotics that promote the occurrence of potential antibiotic-resistant bacteria when used improperly. The efficacy of Pandanus tectorius fruit extract in the regulation of Hsp70 expression, pro-phenoloxidase (ProPO), peroxinectin, penaeidin, crustin and transglutaminase, all immune peptides essential for Vibrio tolerance in white leg shrimp, Penaeus vannamei, was investigated in this study, which included the determination of the safety levels of the extract. Tolerance of shrimp against Vibrio parahaemolyticus, a pathogenic bacteria that causes Acute Hepatopancreas Necrosis Disease (AHPND), was assessed on the basis of median lethal dose challenge survival (LD50 = 106 cells/ml). Mortality was not observed 24 h after exposure of 0.5-6 g/L of the fruit extract, indicating that P. tectorius was not toxic to shrimp at these concentrations. A 24-h incubation of 2-6 g/L of the fruit extract increased shrimp tolerance to V. parahaemolyticus, with survival doubled when the maximum dose tested in this study was used. Concomitant with a rise in survival was the increase in immune-related proteins, with Hsp70, ProPO, peroxinectin, penaeidin, crustin and transglutaminase increased 10, 11, 11, 0.4, 8 and 13-fold respectively. Histological examination of the hepatopancreas and muscle tissues of Vibrio-infected shrimp primed with P. tectorius extract revealed reduced signs of histopathological degeneration, possibly due to the accumulation of Hsp70, a molecular chaperone crucial to cellular protein folding, tissue repair and immune response of living organisms, including Penaeid shrimp.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/immunology*
  15. Anuar AS, Tay ST
    Trop Biomed, 2014 Dec;31(4):802-12.
    PMID: 25776607 MyJurnal
    Klebsiella pneumoniae is a healthcare-associated bacterial pathogen which causes severe diseases in immunocompromised individuals. Concanavalin A (conA), a lectin which recognizes proteins with mannose or glucose residues, has been reported to agglutinate K. pneumoniae and hence, is postulated to have therapeutical potential for K. pneumoniae-induced liver infection. This study investigated the conA binding properties of a large collection of clinical isolates of K. pneumoniae. ConA agglutination reaction was demonstrated by 94 (51.4%) of 183 K. pneumoniae isolates using a microtiter plate assay. The conA agglutination reactions were inhibited in the presence of 2.5 mg/ml D-mannose and 2.5 mg/ml glucose, and following pretreatment of the bacterial suspension with protease and heating at 80ºC. Majority of the positive isolates originated from respiratory specimens. Isolation of conA-binding proteins from K. pneumoniae ATCC 700603 strain was performed using conA affinity column and the conA binding property of the eluted proteins was confirmed by western blotting analysis using conA-HRP conjugates. Proteins with molecular weights ranging from 35 to 60 kDa were eluted from the conA affinity column, of which four were identified as outer membrane protein precursor A (37 kDa), outer membrane protein precursor C (40 kDa), enolase (45 kDa) and chaperonin (60 kDa) using mass spectrometry analysis. Several conA binding proteins (including 45 and 60 kDa) were found to be immunogenic when reacted with rabbit anti-Klebsiella antibody. The function and interplay of the conA binding proteins in bacterium-host cell relationship merits further investigation.
    Matched MeSH terms: Bacterial Proteins/immunology
  16. Appanna R, Huat TL, See LL, Tan PL, Vadivelu J, Devi S
    Clin Vaccine Immunol, 2007 Aug;14(8):969-77.
    PMID: 17567768
    Dengue virus infections are a major cause of morbidity and mortality in tropical and subtropical areas in the world. Attempts to develop effective vaccines have been hampered by the lack of understanding of the pathogenesis of the disease and the absence of suitable experimental models for dengue viral infection. The magnitude of T-cell responses has been reported to correlate with dengue disease severity. Sixty Malaysian adults with dengue viral infections were investigated for their dengue virus-specific T-cell responses to 32 peptides antigens from the structural and nonstructural regions from a dengue virus isolate. Seventeen different peptides from the C, E, NS2B, NS3, NS4A, NS4B, and NS5 regions were found to evoke significant responses in a gamma interferon enzyme-linked immunospot (ELISPOT) assay of samples from 13 selected patients with dengue fever (DF) and dengue hemorrhagic fever (DHF). NS3 and predominantly NS3(422-431) were found to be important T-cell targets. The highest peaks of T-cell responses observed were in responses to NS3(422-431) and NS5(563-571) in DHF patients. We also found almost a sevenfold increase in T-cell response in three DHF patients compared to three DF patient responses to peptide NS3(422-431). A large number of patients' T cells also responded to the NS2B(97-106) region. The ELISPOT analyses also revealed high frequencies of T cells that recognize both serotype-specific and cross-reactive dengue virus antigens in patients with DHF.
    Matched MeSH terms: Viral Structural Proteins/immunology; Viral Nonstructural Proteins/immunology*
  17. Arasu A, Kumaresan V, Sathyamoorthi A, Chaurasia MK, Bhatt P, Gnanam AJ, et al.
    Microbiol Res, 2014 Nov;169(11):824-34.
    PMID: 24780642 DOI: 10.1016/j.micres.2014.03.005
    In this study, we reported a molecular characterization of a novel proto-type galectin-1 from the striped murrel Channa striatus (named as CsGal-1). The full length CsGal-1 was identified from an established striped murrel cDNA library and further we confirmed the sequence by cloning. The complete cDNA sequence of CsGal-1 is 590 base pairs (bp) in length and its coding region encoded a poly peptide of 135 amino acids. The polypeptide contains a galactoside binding lectin domain at 4-135. The domain carries a sugar binding site at 45-74 along with its signatures (H(45)-X-Asn(47)-X-Arg(49) and Trp(69)-X-X-Glu(72)-X-Arg(74)). CsGal-1 shares a highly conserved carbohydrate recognition domain (CRD) with galectin-1 from other proto-type galectin of teleosts. The mRNA expressions of CsGal-1 in healthy and various immune stimulants including Aphanomyces invadans, Aeromonas hydrophila, Escherchia coli lipopolysaccharide and poly I:C injected tissues of C. striatus were examined using qRT-PCR. CsGal-1 mRNA is highly expressed in kidney and is up-regulated with different immune stimulants at various time points. To understand its biological activity, the coding region of CsGal-1 gene was expressed in an E. coli BL21 (DE3) cloning system and its recombinant protein was purified. The recombinant CsGal-1 protein was agglutinated with mouse erythrocytes at a concentration of 4μg/mL in a calcium independent manner. CsGal-1 activity was inhibited by d-galactose at 25mM(-1) and d-glucose and d-fructose at 100mM(-1). The results of microbial binding assay showed that the recombinant CsGal-1 protein agglutinated only with the Gram-negative bacteria. Interestingly, we observed no agglutination against Gram-positive bacteria. Overall, the study showed that CsGal-1 is an important immune gene involved in the recognition and elimination of pathogens in C. striatus.
    Matched MeSH terms: Fish Proteins/immunology*
  18. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 May;32(5):929-33.
    PMID: 22361112 DOI: 10.1016/j.fsi.2012.02.011
    This study reports the first full length gene of interferon related developmental regulator-1 (designated as MrIRDR-1), identified from the transcriptome of Macrobrachium rosenbergii. The complete gene sequence of the MrIRDR-1 is 2459 base pair long with an open reading frame of 1308 base pairs and encoding a predicted protein of 436 amino acids with a calculated molecular mass of 48 kDa. The MrIRDR-1 protein contains a long interferon related developmental regulator super family domain between 30 and 330. The mRNA expressions of MrIRDR-1 in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) infected M. rosenbergii were examined using qRT-PCR. The MrIRDR-1 is highly expressed in hepatopancreas along with all other tissues (walking leg, gills, muscle, haemocyte, pleopods, brain, stomach, intestine and eye stalk). After IHHNV infection, the expression is highly upregulated in hepatopancreas. This result indicates an important role of MrIRDR-1 in prawn defense system.
    Matched MeSH terms: Immediate-Early Proteins/immunology*
  19. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 May;32(5):670-82.
    PMID: 22293093 DOI: 10.1016/j.fsi.2012.01.013
    In this study, we reported a full length of catalase gene (designated as MrCat), identified from the transcriptome database of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrCat is 2504 base pairs in length, and encodes 516 amino acids. The MrCat protein contains three domains such as catalase 1 (catalase proximal heme-ligand signature) at 350-358, catalase 2 (catalase proximal active site signature) at 60-76 and catalase 3 (catalase family profile) at 20-499. The mRNA expressions of MrCat in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction (qRT-PCR). The MrCat is highly expressed in digestive tract and all the other tissues (walking leg, gills, muscle, hemocyte, hepatopancreas, pleopods, brain and eye stalk) of M. rosenbergii taken for analysis. The expression is strongly up-regulated in digestive tract after IHHNV challenge. To understand its biological activity, the recombinant MrCat gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCat existed in high thermal stability and broad spectrum of pH, which showed over 95% enzyme activity between pH 5 and 10.5, and was stable from 40 °C to 70 °C, and exhibited 85-100% enzyme activity from 30 °C to 40 °C.
    Matched MeSH terms: Recombinant Proteins/immunology
  20. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 Jan;32(1):161-9.
    PMID: 22119573 DOI: 10.1016/j.fsi.2011.11.006
    Caspase 3c (MrCasp3c) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrCasp3c consisted of 2080 bp nucleotide encoded 521 polypeptide with an estimated molecular mass of 59 kDa. MrCasp3c sequence contains caspase family p20 domain profile and caspase family p10 domain profile at 236-367 and 378-468 respectively. The quantitative real time PCR analysis revealed a broad expression of MrCasp3c with the highest expression in haemocyte and the lowest in stomach. The expression of MrCasp3c after challenge with the infectious hypodermal and haematopoietic necrosis virus (IHHNV) was tested in haemocyte. In addition, MrCasp3c was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The enzyme activity of MrCasp3c was also found to be up-regulated by IHHNV in haemocyte and hepatopancreas tissues. This study suggested that MrCasp3c may be an effector caspase associated with the induction of apoptosis which is potentially involved in the immune defence of M. rosenbergii.
    Matched MeSH terms: Recombinant Proteins/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links