Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Tela Abba H, Wan Hassan WMS, Saleh MA, Aliyu AS, Ramli AT, Abdulsalam H
    Isotopes Environ Health Stud, 2018 Oct;54(5):522-534.
    PMID: 29847152 DOI: 10.1080/10256016.2018.1474879
    The Jos Plateau has been reported to have elevated levels of natural background radiation. A few earlier studies have measured the levels of natural radioactivity for specific locations in the area. Our interest is to investigate how geology of the study area influences the activity concentrations of natural radionuclides. Thus, the activity concentrations of terrestrial radionuclides in soil samples collected across the geological formations of the Jos Plateau were determined by gamma spectrometry technique. The mean activity concentrations of 226Ra, 232Th and 40K were found to exceed their corresponding world reference values of 35, 40 and 400 Bq kg-1, respectively. Data were compared using statistical methods, analysis of variance (ANOVA) and post hoc tests. The results revealed in some instances significant influences of geological types on the activity concentrations in the area. The spatial distribution maps of activity concentrations of 226Ra, 232Th and 40K were geostatistically interpolated by ordinary Kriging method using ArcGIS software.
    Matched MeSH terms: Radiation Monitoring/methods
  2. Asaduzzaman K, Mannan F, Khandaker MU, Farook MS, Elkezza A, Amin YB, et al.
    PLoS One, 2015;10(10):e0140667.
    PMID: 26473957 DOI: 10.1371/journal.pone.0140667
    The concentrations of primordial radionuclides (226Ra, 232Th and 40K) in commonly used building materials (brick, cement and sand), the raw materials of cement and the by-products of coal-fired power plants (fly ash) collected from various manufacturers and suppliers in Bangladesh were determined via gamma-ray spectrometry using an HPGe detector. The results showed that the mean concentrations of 226Ra, 232Th and 40K in all studied samples slightly exceeded the typical world average values of 50 Bq kg(-1), 50 Bq kg(-1) and 500 Bq kg(-1), respectively. The activity concentrations (especially 226Ra) of fly-ash-containing cement in this study were found to be higher than those of fly-ash-free cement. To evaluate the potential radiological risk to individuals associated with these building materials, various radiological hazard indicators were calculated. The radium equivalent activity values for all samples were found to be lower than the recommended limit for building materials of 370 Bq kg(-1), with the exception of the fly ash. For most samples, the values of the alpha index and the radiological hazard (external and internal) indices were found to be within the safe limit of 1. The mean indoor absorbed dose rate was observed to be higher than the population-weighted world average of 84 nGy h(-1), and the corresponding annual effective dose for most samples fell below the recommended upper dose limit of 1 mSv y(-1). For all investigated materials, the values of the gamma index were found to be greater than 0.5 but less than 1, indicating that the gamma dose contribution from the studied building materials exceeds the exemption dose criterion of 0.3 mSv y(-1) but complies with the upper dose principle of 1 mSv y(-1).
    Matched MeSH terms: Radiation Monitoring/methods
  3. Hashim AK, Hatif AR, Ahmed NM, Wadi IA, Al Qaaod AA
    Appl Radiat Isot, 2021 Jan;167:109410.
    PMID: 33065401 DOI: 10.1016/j.apradiso.2020.109410
    Radon and progeny concentration measurements in various drink samples are intrinsically important for assessing the health risks resulting from daily consumption of these drinks. In this study the comparison between two Solid State Nuclear Track Detectors (SSNTDs), the CR-39 and the CN-85 has been conducted for the purpose of evaluating the radon concentration, annual effective dose, the rate of exhalation of radon and the effective radium content in thirty-two different samples of soft drink, water, and milk available in the local Iraq markets. The results showed that there are significant differences in the measurement results for the two detectors. The annual effective dose of the investigated samples is still below the limit of International Commission on Radiological Protection (ICRP) recommendation in the measurements of both detectors.
    Matched MeSH terms: Radiation Monitoring/methods
  4. Khandaker MU, Jojo PJ, Kassim HA, Amin YM
    Radiat Prot Dosimetry, 2012 Nov;152(1-3):33-7.
    PMID: 22887119 DOI: 10.1093/rpd/ncs145
    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future.
    Matched MeSH terms: Radiation Monitoring/methods
  5. Amin YM, Mahat RH, Nor RM, Khandaker MU, Takleef GH, Bradley DA
    Radiat Prot Dosimetry, 2013 Oct;156(4):475-80.
    PMID: 23584496 DOI: 10.1093/rpd/nct097
    The presence of natural radioactivity and (137)Cs has been investigated in fresh media obtained from South China Sea locations off the coast of peninsular Malaysia. The media include seafood, sea water and sediment. The samples were collected some weeks prior to the devastating 2011 Tōhoku earthquake and associated tsunami, the occurrence of which precipitated the Fukushima incident. All samples showed the presence of naturally occurring (226)Ra, (228)Ra and primordial (40)K, all at typically prevailing levels. The concentrations of natural radioactivity in molluscs were found to be greater than that of other marine life studied herein, the total activity ranging from 337 to 393 Bq kg(-1) dry weight. The total activity in sea water ranged from 15 to 88 Bq l(-1). Sediment samples obtained at deep sea locations more than 20 km offshore further revealed the presence of (137)Cs. The activity of (137)Cs varied from ND to 0.5 Bq kg(-1) dry weight, the activity increasing with offshore distance and depth. The activity concentrations presented herein should be considered useful in assessing the impact of any future radiological contamination to the marine environment.
    Matched MeSH terms: Radiation Monitoring/methods
  6. Khandaker MU, Uwatse OB, Bin Shamsul Khairi KA, Faruque MRI, Bradley DA
    Radiat Prot Dosimetry, 2019 Dec 31;185(3):343-350.
    PMID: 30806465 DOI: 10.1093/rpd/ncz018
    Batu Dam is of considerable importance to the metropolis of Kuala Lumpur, its existence and the quality assessment of its waters being essential in helping to maintain the lives of a large sector of the Malaysian population. Concerning the level of naturally occurring radioactivity contained within its waters, a well characterised HPGe γ-ray technique has been used in making measurements of the concentrations of primordial radionuclides in samples of surface water from the Dam. Based on the mean individual daily consumption of dam water, estimation has been made of the concomitant radiation dose. Activity concentrations, in units of Bq l-1, have been found to be in the range 2.4-3.2 for 226Ra, 1.1-1.3 for 232Th and 22.7-40.7 for 40K, in line with literature data for surface waters. The total annual ingestion dose for infants (<1 y) and adolescents (12-17 y) are found to be significant and greater than the World Health Organization recommended maximum dose of 0.1 mSv y-1 from the imbibing of drinking water. However, the Dam water does not pose a threat to public health, the Dam water not being used as the sole source of drinking water. Noting that this is the only known study of water from Batu Dam, the reported levels allow for evaluation of future changes in the natural radioactivity profile.
    Matched MeSH terms: Radiation Monitoring/methods*
  7. Burgess P
    J Radiol Prot, 2006 Jun;26(2):235-6; author reply 236-7.
    PMID: 16738419
    Matched MeSH terms: Radiation Monitoring/methods*
  8. Alashrah S, Kandaiya S, Maalej N, El-Taher A
    Radiat Prot Dosimetry, 2014 Dec;162(3):338-44.
    PMID: 24300340 DOI: 10.1093/rpd/nct315
    Estimation of the surface dose is very important for patients undergoing radiation therapy. The purpose of this study is to investigate the dose at the surface of a water phantom at a depth of 0.007 cm as recommended by the International Commission on Radiological Protection and International Commission on Radiation Units and Measurement with radiochromic films (RFs), thermoluminescent dosemeters and an ionisation chamber in a 6-MV photon beam. The results were compared with the theoretical calculation using Monte Carlo (MC) simulation software (MCNP5, BEAMnrc and DOSXYZnrc). The RF was calibrated by placing the films at a depth of maximum dose (d(max)) in a solid water phantom and exposing it to doses from 0 to 500 cGy. The films were scanned using a transmission high-resolution HP scanner. The optical density of the film was obtained from the red component of the RGB images using ImageJ software. The per cent surface dose (PSD) and percentage depth dose (PDD) curve were obtained by placing film pieces at the surface and at different depths in the solid water phantom. TLDs were placed at a depth of 10 cm in a solid water phantom for calibration. Then the TLDs were placed at different depths in the water phantom and were exposed to obtain the PDD. The obtained PSD and PDD values were compared with those obtained using a cylindrical ionisation chamber. The PSD was also determined using Monte Carlo simulation of a LINAC 6-MV photon beam. The extrapolation method was used to determine the PSD for all measurements. The PSD was 15.0±3.6% for RF. The TLD measurement of the PSD was 16.0±5.0%. The (0.6 cm(3)) cylindrical ionisation chamber measurement of the PSD was 50.0±3.0%. The theoretical calculation using MCNP5 and DOSXYZnrc yielded a PSD of 15.0±2.0% and 15.7±2.2%. In this study, good agreement between PSD measurements was observed using RF and TLDs with the Monte Carlo calculation. However, the cylindrical chamber measurement yielded an overestimate of the PSD. This is probably due to the ionisation chamber calibration factor that is only valid in charged particle equilibrium condition, which is not achieved at the surface in the build-up region.
    Matched MeSH terms: Radiation Monitoring/methods
  9. Garba NN, Ramli AT, Saleh MA, Sanusi SM, Gabdo HT
    Isotopes Environ Health Stud, 2016 Jun;52(3):214-8.
    PMID: 26540360 DOI: 10.1080/10256016.2016.1095189
    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3.
    Matched MeSH terms: Radiation Monitoring/methods*
  10. Omar M, Ali HM, Abu MP, Kontol KM, Ahmad Z, Ahmad SH, et al.
    Appl Radiat Isot, 2004 May;60(5):779-82.
    PMID: 15082059
    Radium concentrations in 470 samples of the various types of waste from oil and gas industries were analysed using gamma spectrometers. The results showed that the radium concentration varied within a wide range. The highest mean 226Ra and 228Ra concentrations of 114,300 and 130,120 Bq/kg, respectively, were measured in scales. Overall, 75% of the waste, mostly sludge and extraction residue lies within the normal range of radium concentration in soils of Malaysia. However, some platform sludge can have radium concentration up to 560 Bq/kg.
    Matched MeSH terms: Radiation Monitoring/methods
  11. Nasser SM, Khandaker MU, Bradley DA, Isinkaye MO
    Radiat Prot Dosimetry, 2019 Oct 01;184(3-4):422-425.
    PMID: 31038706 DOI: 10.1093/rpd/ncz088
    The present study concerns measurement of the radon concentration in drinking and irrigation waters obtained from the eastern part of Oman, in particular in regard to water quality assessment of the region. The samples were collected from different places covering most types of water sources in the region. A passive and time-integrated track etch detector (LR-115 type II) combined with a high-resolution optical microscope has been used to obtain the radon concentration in the studied samples. Values of dissolved radon in water varied among the water sources; the highest concentration of radon was found to be 363 Bq m-3 in a drinking water sample while well water used for irrigation showed the lowest value, at 140 Bq m-3. Measured data for all water sources are below the permissible limit of 11.1 kBq m-3 recommended by the US-EPA. Annual effective doses for the studied samples were in the range 0.38-0.99 μSv y-1 which is significantly less than the action level recommended by the WHO (0.1 mSv y-1), indicating that the water sources in the Jalan BBH region of Oman are safe to use. The obtained data may serve as a reference for any future radiological study of the waterbody of this region.
    Matched MeSH terms: Radiation Monitoring/methods*
  12. Khandaker MU, Asaduzzaman K, Sulaiman AFB, Bradley DA, Isinkaye MO
    Mar Pollut Bull, 2018 Feb;127:654-663.
    PMID: 29475708 DOI: 10.1016/j.marpolbul.2017.12.055
    Study is made of the radioactivity in the beach sands of Langkawi island, a well-known tourist destination. Investigation is made of the relative presence of the naturally occurring radionuclide 40K and the natural-series indicator radionuclides 226Ra and 232Th, the gamma radiation exposure also being estimated. Sample quantities of black and white sand were collected for gamma ray spectrometry, yielding activity concentration in black sands of 226Ra, 232Th and 40K from 451±9 to 2411±65Bqkg-1 (mean of 1478Bqkg-1); 232±4 to 1272±35Bqkg-1 (mean of 718Bqkg-1) and 61±6 to 136±7Bqkg-1 (mean of 103Bqkg-1) respectively. Conversely, in white sands the respective values for 226Ra and 232Th were appreciably lower, at 8.3±0.5 to 13.7±1.4Bqkg-1 (mean of 9.8Bqkg-1) and 4.5±0.7 to 9.4±1.0Bqkg-1 (mean of 5.9Bqkg-1); 40K activities differed insubstantially from that in black sands, at 85±4 to 133±7Bqkg-1 with a mean of 102Bqkg-1. The mean activity concentrations of 226Ra and 232Th in black sands are comparable with that of high background areas elsewhere in the world. The heavy minerals content gives rise to elevated 226Ra and 232Th activity concentrations in all of black sand samples. Evaluation of the various radiological risk parameters points to values which in some cases could be in excess of recommendations providing for safe living and working. Statistical analysis examines correlations between the origins of the radionuclides, also identifying and classifying the radiological parameters. Present results may help to form an interest in rare-earth resources for the electronics industry, power generation and the viability of nuclear fuels cycle resources.
    Matched MeSH terms: Radiation Monitoring/methods*
  13. Aliyu AS, Ramli AT, Garba NN, Saleh MA, Gabdo HT, Liman MS
    Radiat Prot Dosimetry, 2015 Feb;163(2):238-50.
    PMID: 24827576 DOI: 10.1093/rpd/ncu158
    This study assesses the 'radio-ecological' impacts of Fukushima nuclear accident on non-human biota using the ERICA Tool, which adopts an internationally verified methodology. The paper estimates the impacts of the accident on terrestrial and marine biota based on the environmental data reported in literature for Japan, China, South Korea and the USA. Discernible impacts have been detected in the marine biota around Fukushima Daiichi nuclear power plant. This study confirms that the Fukushima accident had caused heavier damage to marine bionts compared with terrestrial flora and fauna, in Japan.
    Matched MeSH terms: Radiation Monitoring/methods*
  14. Yarima MH, Khandaker MU, Nadhiya A, Olatunji MA
    Radiat Prot Dosimetry, 2019 Oct 01;184(3-4):359-362.
    PMID: 31089715 DOI: 10.1093/rpd/ncz115
    Uranium, thorium and potassium are the most abundant naturally occurring radioactive materials (NORMs) found in soils and other environmental media including foodstuffs. Since the human exposures to NORMs is an unavoidable phenomenon, in such a way that they can easily find their way to human being via food chain, detailed knowledge on their presence in foodstuffs is necessary to assess the radiation dose to the population. Thus, the present study concerns the assessment of natural radioactivity in maize, a staple foodstuff for Nigerian, via HPGe gamma-ray spectrometry. Activity concentrations (Bq/kg) in the maize samples were found to be in the range of 6.1 ± 0.6-8.2 ± 1.3, 2.2 ± 0.4-5.1 ± 0.7 and 288 ± 16-401 ± 24 for 226Ra, 232Th and 40K, respectively. Measured data for 226Ra and 232Th show below the world average values of 67 Bq/kg and 82 Bq/kg, respectively, while the activity of 40K exceeds the global average of 310 Bq/kg. The annual effective dose via the maize consumption was found to be far below the UNSCEAR recommended ingestion dose limit of 290 μSv/y, and the estimated lifetime cancer risk show lower than the ICRP (1991) cancer risk factor of 2.5 × 10-3 based on the additional annual dose limit of 1 mSv for general public, thus pose no adverse health risk to the Nigerian populace.
    Matched MeSH terms: Radiation Monitoring/methods*
  15. Alnour IA, Wagiran H, Ibrahim N, Hamzah S, Elias MS, Laili Z, et al.
    Radiat Prot Dosimetry, 2014 Jan;158(2):201-7.
    PMID: 23965286 DOI: 10.1093/rpd/nct206
    The distribution of natural radionuclides ((238)U, (232)Th and (40)K) and their radiological hazard effect in rocks collected from the state of Johor, Malaysia were determined by gamma spectroscopy using a high-purity germanium detector. The highest values of (238)U, (232)Th and (40)K activity concentrations (67±6, 85±7 and 722±18 Bg kg(-1), respectively) were observed in the granite rock. The lowest concentrations of (238)U and (232)Th (2±0.1 Bq kg(-1) for (238)U and 2±0.1 Bq kg(-1) for (232)Th) were observed in gabbro rock. The lowest concentration of (40)K (45±2 Bq kg(-1)) was detected in sandstone. The radium equivalent activity concentrations for all rock samples investigated were lower than the internationally accepted value of 370 Bq kg(-1). The highest value of radium equivalent in the present study (239±17 Bq kg(-1)) was recorded in the area of granite belonging to an acid intrusive rock geological structure. The absorbed dose rate was found to range from 4 to 112 nGy h(-1). The effective dose ranged from 5 to 138 μSv h(-1). The internal and external hazard index values were given in results lower than unity. The purpose of this study is to provide information related to radioactivity background levels and the effects of radiation on residents in the study area under investigation. Moreover, the relationships between the radioactivity levels in the rocks within the geological structure of the studied area are discussed.
    Matched MeSH terms: Radiation Monitoring/methods
  16. Lee SK, Wagiran H, Ramli AT
    Radiat Prot Dosimetry, 2014 Dec;162(3):345-50.
    PMID: 24214911 DOI: 10.1093/rpd/nct273
    The objective of this study was to determine the gross alpha and gross beta activity concentrations from the different soil types found in the Kinta District, Perak, Malaysia. A total of 128 soil samples were collected and their dose rates were measured 1 m above the ground. Gross alpha and gross beta activity measurements were carried out using gas flow proportional counter, Tennelec Series 5 LB5500 Automatic Low Background Counting System. The alpha activity concentration ranged from 15 to 9634 Bq kg(-1) with a mean value of 1558±121 Bq kg(-1). The beta activity concentration ranged from 142 to 6173 Bq kg(-1) with a mean value of 1112±32 Bq kg(-1). High alpha and beta activity concentrations are from the same soil type. The results of the analysis show a strong correlation between the gross alpha activity concentration and dose rate (R = 0.92). The data obtained can be used as a database for each soil type.
    Matched MeSH terms: Radiation Monitoring/methods*
  17. Sanusi MSM, Hassan WMSW, Hashim S, Ramli AT
    Appl Radiat Isot, 2021 Aug;174:109791.
    PMID: 34062400 DOI: 10.1016/j.apradiso.2021.109791
    Terrestrial radioactivity monitoring of 238U and 232Th series, and 40K in soil is an essential practice for radioactivity and radiation measurement of a place. In conventional practice, only basic data can be in-situ measured using a survey instrument, for example radioactivity concentration in soil and ambient dose equivalent rate. For other physical quantities, for example organ absorbed dose and organ equivalent dose, the measurement is impossible to be performed and can only be computed using Monte Carlo radiation transport simulations. In the past, most of the works only focused on calculating air-kerma-to-effective dose conversion factors. However, the information on organ dose conversion factors is scarcely documented and reported. This study was conducted to calculate organ absorbed and tissue-weighted equivalent dose conversion factors as a result of exposure from terrestrial gamma radiation. Series of organ dose conversion factors is produced based on computations from Monte Carlo MCNP5 simulations using modelled gamma irradiation geometry and established adult MIRD phantom. The study found out that most of the radiation exposed organs absorb energy at comparable rates, except for dense and superficial tissues i.e., skeleton and skin, which indicated slightly higher values. The good agreement between this work and previous studies demonstrated that our gamma irradiation geometry and modelling of gamma radiation sources are adequate. Therefore, the proposed organ dose conversion factors from this study are reasonably acceptable for dose estimation in environmental radioactivity monitoring practices.
    Matched MeSH terms: Radiation Monitoring/methods*
  18. Aliyu AS, Evangeliou N, Mousseau TA, Wu J, Ramli AT
    Environ Int, 2015 Dec;85:213-28.
    PMID: 26425805 DOI: 10.1016/j.envint.2015.09.020
    Since 2011, the scientific community has worked to identify the exact transport and deposition patterns of radionuclides released from the accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan. Nevertheless, there still remain many unknowns concerning the health and environmental impacts of these radionuclides. The present paper reviews the current understanding of the FDNPP accident with respect to interactions of the released radionuclides with the environment and impacts on human and non-human biota. Here, we scrutinize existing literature and combine and interpret observations and modeling assessments derived after Fukushima. Finally, we discuss the behavior and applications of radionuclides that might be used as tracers of environmental processes. This review focuses on (137)Cs and (131)I releases derived from Fukushima. Published estimates suggest total release amounts of 12-36.7PBq of (137)Cs and 150-160PBq of (131)I. Maximum estimated human mortality due to the Fukushima nuclear accident is 10,000 (due to all causes) and the maximum estimates for lifetime cancer mortality and morbidity are 1500 and 1800, respectively. Studies of plants and animals in the forests of Fukushima have recorded a range of physiological, developmental, morphological, and behavioral consequences of exposure to radioactivity. Some of the effects observed in the exposed populations include the following: hematological aberrations in Fukushima monkeys; genetic, developmental and morphological aberrations in a butterfly; declines in abundances of birds, butterflies and cicadas; aberrant growth forms in trees; and morphological abnormalities in aphids. These findings are discussed from the perspective of conservation biology.
    Matched MeSH terms: Radiation Monitoring/methods*
  19. Mahyuddin NM, Russell G
    ScientificWorldJournal, 2014;2014:876435.
    PMID: 24782671 DOI: 10.1155/2014/876435
    Technology scaling relies on reduced nodal capacitances and lower voltages in order to improve performance and power consumption, resulting in significant increase in layout density, thus making these submicron technologies more susceptible to soft errors. Previous analysis indicates a significant improvement in SEU tolerance of the driver when the bias current is injected into the circuit but results in increase of power dissipation. Subsequently, other alternatives are considered. The impact of transistor sizes and temperature on SEU tolerance is tested. Results indicate no significant changes in Q(crit) when the effective transistor length is increased by 10%, but there is an improvement when high temperature and high bias currents are applied. However, this is due to other process parameters that are temperature dependent, which contribute to the sharp increase in Q(crit). It is found that, with temperature, there is no clear factor that can justify the direct impact of temperature on the SEU tolerance. Thus, in order to improve the SEU tolerance, high bias currents are still considered to be the most effective method in improving the SEU sensitivity. However, good trade-off is required for the low-swing driver in order to meet the reliability target with minimal power overhead.
    Matched MeSH terms: Radiation Monitoring/methods
  20. Aziz Saleh M, Termizi Ramli A, Alajerami Y, Damoom M, Sadiq Aliyu A
    Isotopes Environ Health Stud, 2014;50(1):103-13.
    PMID: 24279290 DOI: 10.1080/10256016.2013.821469
    The radiation survey of the ambient environment was conducted using two gamma detectors, and the measurement results were used in the computation of the mean external radiation dose rate, mean-weighted dose rate and annual effective dose, which are 144 nGy h(-1), 0.891 mSv y(-1) and 178 μSv, respectively. A high-purity germanium detector was used to determine the activity concentrations of (232)Th, (226)Ra and (40)K in soil samples. The results of the gamma spectrometry of the soil samples show radioactivity concentration ranges from 19±1 to 405±13 Bq kg(-1) with a mean value of 137±5 Bq kg(-1) for (232)Th, from 21±2 to 268±9 Bq kg(-1)with a mean value of 78±3 Bq kg(-1) for (226)Ra and from 23±9 to 1268±58 Bq kg(-1) with a mean value of 207±13 Bq kg(-1) for (40)K. Radium equivalent activity (Raeq) and external hazard index (Hex) were 290 Bq kg(-1) and 0.784, respectively, which were safe for the population. The mean lifetime dose and lifetime cancer risk for each person living in the area with average lifetime (70 y) were 12.46 mSv and 7.25×10(-4) Sv year, respectively. The results were compared with values given in United Nations Scientific Committee on the Effects of Atomic Radiation 2000.
    Matched MeSH terms: Radiation Monitoring/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links