Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Abbas SA, Sharma JN, Yusof AP
    Immunopharmacology, 1999 Oct 15;44(1-2):93-8.
    PMID: 10604530
    It is known that BK does play a role in the cardioprotective effect of angiotensin converting enzyme (ACE) inhibitors. The present study therefore was conducted to examine the effects of bradykinin (BK) and its antagonist on survival time in spontaneously hypertensive rats (SHR) with coronary artery ligation for 15 min and continuously. We also evaluated the heart rate and blood pressure (BP) in the presence and absence of BK and BK2 receptor antagonist, D-Arg-[Hyp-D-Phe7]BK. Coronary artery was ligated in anaesthetized rats and they were artificially ventilated with room air (stroke volume, 4 ml; 48 strokes/min) as described by the previous investigators. Lead II elecrocardiogram (ECG) was recorded from subcutaneous steel needle electrodes. Results of this investigation indicated that BK treatment 4 microg/kg (i.v.) and 8 microg/kg (i.v.) caused significant (P < 0.05) increase in survival time in SHR with coronary artery ligation for 15 min and continuously as compare to their respective saline-treated controls. However, BK antagonist treatment 4 microg/kg (i.v.) abolished the increase in survival time caused by BK treatment. The mean values of survival time between the saline-treated and BK antagonist plus BK-treated rats did not differ significantly (P > 0.05). The heart rate and BP responses were greatly reduced (P < 0.001) in the presence of coronary artery ligation. These findings suggest that BK might have cardioprotective effect to increase the survival time in rats by activating BK2 receptors after coronary artery ligation.
    Matched MeSH terms: Rats, Inbred SHR
  2. Sharma JN, Kesavarao U, Yusof AP
    Immunopharmacology, 1999 Sep;43(2-3):129-32.
    PMID: 10596843 DOI: 10.1016/s0162-3109(99)00070-3
    The present investigation was aimed at evaluating the cardiac and total plasma kininogen levels, as well as LVWT in hypertensive and diabetic rats. STZ-induced diabetes produced a significant (P < 0.001) rise in mean arterial blood pressure (BP). The LVWT increased (P < 0.001) in SHR with and without diabetes) and diabetic WKYR. The cardiac tissue, as well as total plasma kininogen levels fell significantly (P < 0.001) in diabetic WKYR and SHR with and without diabetes compared to the control WKYR. These findings suggest that reduced kininogen levels may indicate a deficiency in kinin generation in the heart and in the peripheral circulation in diabetic and hypertensive rats. This effect may contribute to the development of LVH.
    Matched MeSH terms: Rats, Inbred SHR
  3. Sharma JN, Uma K, Yusof AP
    Int J Cardiol, 1998 Feb 28;63(3):229-35.
    PMID: 9578349 DOI: 10.1016/s0167-5273(97)00329-x
    We investigated the cardiac tissue kallikrein and kininogen levels, left ventricular wall thickness and mean arterial blood pressure of Wistar Kyoto and spontaneously hypertensive rats with and without streptozotocin-induced diabetes. The mean arterial blood pressure was highly elevated (P<0.001) in Wistar Kyoto diabetic and spontaneously hypertensive diabetic rats as compared with their respective controls. The cardiac tissue kallikrein and kininogen levels were reduced significantly (P<0.001) in diabetic Wistar Kyoto, spontaneously hypertensive and diabetic spontaneously hypertensive compared with Wistar Kyoto control rats. In addition, the left ventricular thickness was found to be increased (P<0.001) in diabetic Wistar Kyoto and spontaneously hypertensive rats in the presence and in the absence of diabetes. Our results indicate that reduced activity of the kinin-forming system may be responsible for inducing left ventricular hypertrophy in the presence of raised mean arterial blood pressure in diabetic and hypertensive rats. Thus, the kinin-forming components might have a protective role against the development of left ventricular hypertrophy. The possible significance of these findings is discussed.
    Matched MeSH terms: Rats, Inbred SHR
  4. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    J Med Food, 2018 Mar;21(3):289-301.
    PMID: 29420109 DOI: 10.1089/jmf.2017.4008
    The seeds of Swietenia macrophylla King (SM) (Meliaceae) are used as a folk medicine for the treatment of hypertension in Malaysia. However, the antihypertensive and vasorelaxant effects of SM seeds are still not widely studied. Thus, this study was designed to investigate the in vivo antihypertensive effects and in vitro mechanism of vasorelaxation of a 50% ethanolic SM seed extract (SM50) and the fingerprint of SM50 was developed through tri-step Fourier transform infrared (FTIR) spectroscopy. The vasorelaxant activity and the underlying mechanisms of SM50 were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats in the presence of antagonists. The pharmacological effect of SM50 was investigated by oral administration of spontaneously hypertensive rats (SHRs) with three different doses of SM50 (1000, 500, and 250 mg/kg/day) for 4 weeks and their systolic blood pressure (SBP) and diastolic blood pressure (DBP) values were measured weekly using tail-cuff method. The tri-step FTIR macro-fingerprint of SM50 showed that SM50 contains stachyose, flavonoids, limonoids, and ester, which may contribute to its vasorelaxant effect. The results showed that the vasorelaxant activity of SM50 was mostly attributed to channel-linked receptors pathways through the blockage of voltage-operated calcium channels (VOCC). SM50 also acts as both potassium channels opener and inositol triphosphate receptor (IP3R) inhibitor, followed by β2-adrenergic pathway, and ultimately mediated through the nitric oxide/soluble guanylyl cyclase/cyclic 3',5'-guanosine monophosphate (NO/sGC/cGMP) signaling pathways. The treatment of SM50 also significantly decreased the SBP and DBP in SHRs. In conclusion, the antihypertensive mechanism of SM50 was mediated by VOCC, K+ channels, IP3R, G-protein-coupled β2-adrenergic receptor, and followed by NO/sGC/cGMP signaling mechanism pathways in descending order. The data suggested that SM50 has the potential to be used as a herbal medicament to treat hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  5. Tew WY, Tan CS, Yan CS, Loh HW, Wen X, Wei X, et al.
    Biomed Pharmacother, 2023 Jan;157:114020.
    PMID: 36469968 DOI: 10.1016/j.biopha.2022.114020
    Chrysin, a bioflavonoid belonging to the flavone, occurs naturally in plants such as the passionflower, honey and propolis. Few studies have demonstrated that chrysin can promote vasorelaxant activities in rats' aorta and mesenteric arteries. To date, no research has explored the signalling system routes that chrysin may utilise to produce its vasorelaxant action. Therefore, this study aimed to investigate the underlying mechanisms involved in chrysin-induced vasorelaxant in rats' aortic rings and assess the antihypertensive effect of chrysin in spontaneously hypertensive rats (SHRs). The findings revealed that chrysin utilised both endothelium-dependent and endothelium-independent mechanisms. The presence of L-NAME (endothelial NO synthase inhibitor), ODQ (sGC inhibitor), methylene blue (cGMP lowering agent), 4-AP (voltage-gated potassium channel inhibitor), atropine (muscarinic receptors inhibitor) and propranolol (β-adrenergic receptors inhibitor) significantly reduced the chrysin's vasorelaxant action. Furthermore, chrysin can reduce intracellular Ca2+ levels by limiting the extracellular intake of Ca2+ through voltage-operated calcium channels and blocking the intracellular release of Ca2+ from the sarcoplasmic reticulum via the IP3 receptor. These indicate that chrysin-induced vasorelaxants involved NO/sGC/cGMP signalling cascade, muscarinic and β-adrenergic receptors, also the potassium and calcium channels. Although chrysin had vasorelaxant effects in in vitro studies, the in vivo antihypertensive experiment discovered chrysin does not significantly reduce the blood pressure of SHRs following 21 days of oral treatment. This study proved that chrysin utilised multiple signalling pathways to produce its vasorelaxant effect in the thoracic aorta of rats; however, it had no antihypertensive effect on SHRs.
    Matched MeSH terms: Rats, Inbred SHR
  6. Ismail A, Mohamed M, Sulaiman SA, Wan Ahmad WA
    PMID: 24454508 DOI: 10.1155/2013/716532
    Syzygium polyanthum (Wight) Walp. var. polyanthum leaves are consumed as a traditional Malay treatment of hypertension. This study investigates hypotensive potential of aqueous (AESP) and residual methanolic (met-AESP) extracts of S. polyanthum leaves and possible involvement of autonomic receptors. AESP and met-AESP (20 to 100 mg/kg) were intravenously administered into anaesthetized Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Blood pressure and heart were monitored for 20 min. AESP and met-AESP induced significant dose-dependent hypotension, but only 100 mg/kg AESP caused mild bradycardia (n = 5). AESP-induced hypotension was more potent than that of met-AESP in WKY. AESP has a faster onset time than that of met-AESP in both WKY and SHR. However, met-AESP-induced hypotension was more sustained than that of AESP in SHR. Blockages of autonomic ganglion and α -adrenergic receptors using hexamethonium and phentolamine (n = 5 for each group) partially attenuated AESP-induced hypotension, suggesting involvement of α -adrenergic receptors. Blockages of autonomic ganglion, β -adrenergic, cholinergic receptors, and nitric oxide production using hexamethonium, propranolol, atropine, and N- ω -nitro-l arginine methyl ester (L-NAME) (n = 5 for each group) partially attenuated met-AESP-induced hypotension, suggesting involvement of β -adrenergic and cholinergic receptors via nitric oxide production.
    Matched MeSH terms: Rats, Inbred SHR
  7. Sharma JN, Stewart JM, Mohsin SS, Katori M, Vavrek R
    Agents Actions Suppl., 1992;38 ( Pt 3):258-69.
    PMID: 1334354
    We have evaluated the effects of a B2 receptor antagonist (B5630) of kinins on BK and captopril-induced acute hypotensive responses in anaesthetized SHR. Intravenous treatment of BK (1.0 microgram) and captopril (0.3 mg/kg) caused significant (p < 0.05) fall in the SBP and DBP. Whereas BK caused greater fall in the SBP (p < 0.05), DBP (p < 0.01) and duration of hypotension (p < 0.05) when administered after captopril (Fig 1 and 2). All the hypotensive effects of BK and captopril were significantly antagonised (p < 0.05) in the presence of B5630 (2.0 mg/kg). Further, the duration of hypotensive responses of BK and captopril were blocked (p < 0.05) by B5630. The agonists and BK-antagonist did not cause significant (p > 0.05) alterations in HR during the entire investigation. These findings provide evidence to support the suggestion that B2 receptor might be involved in the regulation of the hypotensive actions of BK and captopril. Kinins should also have valuable functions in the antihypertensive property of captopril-like drugs.
    Matched MeSH terms: Rats, Inbred SHR
  8. Yusoff NSN, Mustapha Z, Sharif SET, Govindasamy C, Sirajudeen KNS
    PMID: 28605330 DOI: 10.1615/JEnvironPatholToxicolOncol.2017014521
    Oxidative stress has been suggested to play a role in hypertension- and hypertension-induced organ damage. The effect of antihypertensive drug treatments on oxidative stress markers has not been well assessed. Therefore, in this study we investigated the effect of enalapril on oxidative stress markers in hearts of hypertensive rat models such as spontaneously hypertensive rats (SHR) and SHRs administered N-nitro-L-arginine methyl ester (SHR+L-NAME rats). Male rats were divided into four groups: SHRs, SHR+enalapril (SHR-E) rats, SHR+L-NAME rats, SHR+enalapril+L-NAME (SHRE+L-NAME) rats. Rats (SHREs) were administered enalapril (30 mg kg-1 day-1) in drinking water from week 4 to week 28 and L-NAME (25 mg kg-1 day-1) from week 16 to week 28 in drinking water. At the end of 28 weeks, animals were sacrificed, and their hearts were collected for the assessment of oxidative stress markers and histological examination. Enalapril treatment significantly enhanced the total antioxidant status (TAS) (P < 0.001), reduced the oxidized glutathione ratio (GSH : GSSG) (P < 0.001), and reduced to thibarbituric acid reactive substances (TBARS) (P < 0.001) and protein carbonyl content (PCO) (P < 0.001), which thus reduced the oxidative stress in the heart. The fibrosis areas in SHRs and SHR+L-NAME rats were also markedly reduced. These findings suggest that enalapril might play a protective role in hypertension- and hypertension-induced organ damage.
    Matched MeSH terms: Rats, Inbred SHR
  9. Nik Yusoff NS, Mustapha Z, Govindasamy C, Sirajudeen KN
    Oxid Med Cell Longev, 2013;2013:927214.
    PMID: 23766863 DOI: 10.1155/2013/927214
    Hypertension is a risk factor for several cardiovascular diseases and oxidative stress suggested to be involved in the pathophysiology. Antihypertensive drug Clonidine action in ameliorating oxidative stress was not well studied. Therefore, this study investigate the effect of Clonidine on oxidative stress markers and nitric oxide (NO) in SHR and nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups [SHR, SHR+Clonidine (SHR-C), SHR+L-NAME, SHR+Clonidine+L-NAME(SHRC+L-NAME)]. Rats (SHRC) were administered with Clonidine (0.5 mg kg(-1) day(-1)) from 4 weeks to 28 weeks in drinking water and L-NAME (25 mg kg(-1) day(-1)) from 16 weeks to 28 weeks to SHRC+L-NAME. Systolic blood pressure (SBP) was measured. At the end of 28 weeks, all rats were sacrificed and in their heart homogenate, oxidative stress parameters and NO was assessed. Clonidine treatment significantly enhanced the total antioxidant status (TAS) (P < 0.001) and reduced the thibarbituric acid reactive substances (TBARS) (P < 0.001) and protein carbonyl content (PCO) (P < 0.05). These data suggest that oxidative stress is involved in the hypertensive organ damage and Clonidine not only lowers the SBP but also ameliorated the oxidative stress in the heart of SHR and SHR+L-NAME.
    Matched MeSH terms: Rats, Inbred SHR
  10. Singh HJ, Keah LS, Kumar A, Sirajudeen KN
    Exp. Toxicol. Pathol., 2012 Nov;64(7-8):751-2.
    PMID: 21354772 DOI: 10.1016/j.etp.2011.01.011
    This report documents an incidental finding during a study investigating the effects of melatonin supplementation on the development of blood pressure in SHR. Administration of 10 mg/kg/day of melatonin in drinking water during pregnancy to Wistar-Kyoto (WKY) dams caused a loss of more than 50% of the pups by the age of three weeks and 95% by the age of 6 weeks. There was no maternal morbidity or mortality in the two strains or death of any of the SHR pups. No obvious physical defects were present but mean body weight was lower in the surviving WKY rats when compared to that of melatonin supplemented SHR or non-supplemented WKY pups. The reason for the high mortality in WKY pups is uncertain and appears to be strain if not batch specific. There is a need for caution in its use, particularly during pregnancy, and clearly necessitates more detailed studies.
    Matched MeSH terms: Rats, Inbred SHR
  11. Siew-Keah L, Sundaram A, Sirajudeen KN, Zakaria R, Singh HJ
    J Physiol Biochem, 2014 Mar;70(1):73-9.
    PMID: 23975651 DOI: 10.1007/s13105-013-0282-3
    Antenatal and postnatal environments are hypothesised to influence the development of hypertension. This study investigates the synergistic effect of cross-fostering and melatonin supplementation on the development of hypertension and renal glutathione system in spontaneously hypertensive rats (SHR). In one experiment, 1-day-old male SHR pups were fostered to either SHR (shr-SHR) or Wistar-Kyoto rats, (shr-WKY). In a concurrent experiment, SHR dams were given melatonin in drinking water (10 mg/kg body weight) from day 1 of pregnancy. Immediately following delivery, 1-day-old male pups were fostered either to SHR (Mel-shr-SHR) or WKY (Mel-shr-WKY) dams receiving melatonin supplementation until weaning on day 21. Upon weaning, melatonin supplementation was continued to these pups until the age of 16 weeks. Systolic blood pressures (SBP) were recorded at the age of 4, 6, 8, 12 and 16 weeks. Renal antioxidant activities were measured. Mean SBP of shr-WKY, Mel-shr-SHR and Mel-shr-WKY was significantly lower than that in shr-SHR until the age of 8 weeks. At 12 and 16 weeks of age, mean SBP of Mel-shr-WKY was lower than those in non-treated shr-SHR and shr-WKY pups but was not significantly different from that in Mel-shr-SHR. Renal glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities were significantly higher in Mel-shr-SHR and Mel-shr-WKY at 16 weeks of age. It appears that combination of cross-fostering and melatonin supplementation exerts no synergistic effect on delaying the rise in blood pressure in SHR. The elevated GPx and GST activities are likely to be due to the effect of melatonin supplementation.
    Matched MeSH terms: Rats, Inbred SHR
  12. Lee SK, Sirajudeen KN, Sundaram A, Zakaria R, Singh HJ
    J Physiol Biochem, 2011 Jun;67(2):249-57.
    PMID: 21210316 DOI: 10.1007/s13105-010-0070-2
    Although melatonin lowers blood pressure in spontaneously hypertensive rats (SHR), its effect following antenatal and postpartum supplementation on the subsequent development of hypertension in SHR pups remains unknown. To investigate this, SHR dams were given melatonin in drinking water (10 mg/kg body weight/day) from day 1 of pregnancy until day 21 postpartum. After weaning, a group of male pups continued to receive melatonin till the age of 16 weeks (Mel-SHR), while no further melatonin was given to another group of male pups (Maternal-Mel-SHR). Controls received plain drinking water. Systolic blood pressure (SBP) was measured at 4, 6, 8, 12 and 16 weeks of age, after which the kidneys were collected for analysis of antioxidant enzyme profiles. SBP was significantly lower till the age of 8 weeks in Maternal-Mel-SHR and Mel-SHR than that in the controls, after which no significant difference was evident in SBP between the controls and Maternal-Mel-SHR. SBP in Mel-SHR was lower than that in controls and Maternal-Mel-SHR at 12 and 16 weeks of age. Renal glutathione peroxidase (GPx) and glutathione s-transferase (GST) activities, levels of total glutathione and relative GPx-1 protein were significantly higher in Mel-SHR. GPx protein was however significantly higher in Mel-SHR. No significant differences were evident between the three groups in the activities of superoxide dismutase, catalase and glutathione reductase. In conclusion, it appears that while antenatal and postpartum melatonin supplementation decreases the rate of rise in blood pressure in SHR offspring, it however does not alter the tendency of offspring of SHR to develop hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  13. Lee SK, Arunkumar S, Sirajudeen KN, Singh HJ
    J Physiol Biochem, 2010 Dec;66(4):321-7.
    PMID: 20680541 DOI: 10.1007/s13105-010-0038-2
    Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.
    Matched MeSH terms: Rats, Inbred SHR
  14. Lee SK, Sirajudeen KN, Sundaram A, Zakaria R, Singh HJ
    Clin Exp Pharmacol Physiol, 2011 Dec;38(12):854-9.
    PMID: 21973174 DOI: 10.1111/j.1440-1681.2011.05624.x
    1. The hypotensive effect of cross-fostering in spontaneously hypertensive rats (SHR) is thought to involve adjustments in renal function. However, its association with renal anti-oxidant/oxidant balance during cross-fostering is not known. 2. The present study examined the effect of cross-fostering and in-fostering of 1-day-old offspring between SHR and Wistar-Kyoto (WKY) dams on renal anti-oxidant/oxidant status and systolic blood pressure (SBP). Renal anti-oxidant/oxidant status and SBP were determined in the offspring from 4-16 weeks of age. 3. Cross-fostered SHR had significantly lower SBP than in-fostered SHR at 6, 8 and 12 weeks, but not at 16 weeks (127 ± 1 vs 144 ± 2, 138 ± 1 vs 160 ± 1, 174 ± 2 vs 184 ± 2 and 199 ± 2 vs 194 ± 3 mmHg at 6, 8, 12 and 16 weeks, respectively). No differences in SBP were evident between cross-fostered and in-fostered WKY rats. There were no significant differences in levels of thiobarbituric acid-reactive substances (TBARS), protein carbonyl and total anti-oxidant status (TAS) or superoxide dismutase, catalase, glutathione peroxidase (GPx), glutathione S-transferase and glutathione reductase activity between cross-fostered and in-fostered SHR or WKY offspring. However, compared with WKY rats, catalase activity was higher at 6 and 16 weeks, TAS was higher at 16 weeks and GPx activity and TBARS were lower at 16 weeks in SHR. 4. It appears that cross-fostering of SHR offspring to WKY dams during the early postnatal period causes a transient delay in the rise in blood pressure in SHR and that this does not involve the renal anti-oxidant/oxidant system.
    Matched MeSH terms: Rats, Inbred SHR
  15. Azis NA, Agarwal R, Ismail NM, Ismail NH, Kamal MSA, Radjeni Z, et al.
    Mol Biol Rep, 2019 Jun;46(3):2841-2849.
    PMID: 30977084 DOI: 10.1007/s11033-019-04730-w
    This study investigated the effects of a standardised ethanol and water extract of Ficus deltoidea var. Kunstleri (FDK) on blood pressure, renin-angiotensin-aldosterone system (RAAS), endothelial function and antioxidant system in spontaneously hypertensive rats (SHR). Seven groups of male SHR were administered orally in volumes of 0.5 mL of either FDK at doses of 500, 800, 1000 and 1300 mg kg- 1, or captopril at 50 mg kg- 1 or losartan at 10 mg kg- 1 body weight once daily for 4 weeks or 0.5 mL distilled water. Body weight, systolic blood pressures (SBP) and heart rate (HR) were measured every week. 24-hour urine samples were collected at weeks 0 and 4 for electrolyte analysis. At week 4, sera from rats in the control and 1000 mg kg- 1 of FDK treated groups were analyzed for electrolytes and components of RAAS, endothelial function and anti-oxidant capacity. SBP at week 4 was significantly lower in all treatment groups, including captopril and losartan, when compared to that of the controls. Compared to the controls, ACE activity and concentrations of angiotensin I, angiotensin II and aldosterone were lower whereas concentrations of angiotensinogen and angiotensin converting enzyme 2 were higher in FDK treated rats. Concentration of eNOS and total anti-oxidant capacity were higher in FDK treated rats. Urine calcium excretion was higher in FDK treated rats. In conclusion, it appears that ethanol and water extract of FDK decreases blood pressure in SHR, which might involve mechanisms that include RAAS, anti-oxidant and endothelial system.
    Matched MeSH terms: Rats, Inbred SHR
  16. Sundaram A, Siew Keah L, Sirajudeen KN, Singh HJ
    Hypertens Res, 2013 Mar;36(3):213-8.
    PMID: 23096233 DOI: 10.1038/hr.2012.163
    Although oxidative stress has been implicated in the pathogenesis of hypertension in spontaneously hypertensive rats (SHRs), there is little information on the levels of primary antioxidant enzymes status (AOEs) in pre-hypertensive SHR. This study therefore determined the activities of primary AOEs and their mRNA levels, levels of hydrogen peroxide (H2O2), malondialdehyde (MDA) and total antioxidant status (TAS) in whole kidneys of SHR and age-matched Wistar-Kyoto (WKY) rats aged between 2 and 16 weeks. Compared with age-matched WKY rats, catalase (CAT) activity was significantly higher from the age of 2 weeks (P<0.001) and glutathione peroxide (GPx) activity was lower from the age of 3 weeks (P<0.001) in SHR. CAT mRNA levels were significantly higher in SHR aged 2, 4, 6 and 12 weeks. GPx mRNA levels were significantly lower in SHR at 8 and 12 weeks. Superoxide dismutase activity or its mRNA levels were not different between the two strains. H2O2 levels were significantly lower in SHR from the age of 8 weeks (P<0.01). TAS was significantly higher in SHR from the age of 3 weeks (P<0.05). MDA levels were only significantly higher at 16 weeks of age in the SHR (P<0.05). The data suggest that altered renal CAT and GPx mRNA expression and activity precede the development of hypertension in SHR. The raised CAT activity perhaps contributes to the higher TAS and lower H2O2 levels in SHR. In view of these findings, the precise role of oxidative stress in the pathogenesis of hypertension in SHR needs to be investigated further.
    Matched MeSH terms: Rats, Inbred SHR
  17. Kamal MSA, Mediani A, Kasim N, Ismail NH, Satar NA, Azis NA, et al.
    J Pharm Biomed Anal, 2022 Feb 20;210:114579.
    PMID: 35016031 DOI: 10.1016/j.jpba.2021.114579
    Ficus deltoidea var angustifolia (FD-A) reduces blood pressure in spontaneously hypertensive rats (SHR) but the mechanism remains unknown. Changes in urine metabolites following FD-A treatment in SHR were, therefore, examined to identify the mechanism of its antihypertensive action. Male SHR were given either FD-A (1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 mL of ethanolic-water (control) daily for 4 weeks. Systolic blood pressure (SBP) was measured every week and urine spectra data acquisition, on urine collected after four weeks of treatment, were compared using multivariate data analysis. SBP in FD-A and losartan treated rats was significantly lower than that in the controls after four weeks of treatment. Urine spectra analysis revealed 24 potential biomarkers with variable importance projections (VIP) above 0.5. These included creatine, hippurate, benzoate, trimethylamine N-oxide, taurine, dimethylamine, homocysteine, allantoin, methylamine, n-phenylacetylglycine, guanidinoacetate, creatinine, lactate, glucarate, kynurenine, ethanolamine, betaine, 3-hydroxybutyrate, glycine, lysine, glutamine, 2-hydroxyphenylacetate, 3-indoxylsulfate and sarcosine. From the profile of these metabolites, it seems that FD-A affects urinary levels of metabolites like taurine, hypotaurine, glycine, serine, threonine, alanine, aspartate and glutamine. Alterations in these and the pathways involved in their metabolism might underlie the molecular mechanism of its antihypertensive action.
    Matched MeSH terms: Rats, Inbred SHR
  18. Kamal MSA, Ismail NH, Satar NA, Azis NA, Radjeni Z, Mohammad Noor HS, et al.
    Clin Exp Hypertens, 2019;41(5):444-451.
    PMID: 30648895 DOI: 10.1080/10641963.2018.1506467
    Ficus deltoidea is used in Malay traditional medicine for the treatment of a number of disorders, including hypertension. There is, however, no scientific evidence on its anti-hypertensive effects. This study, therefore, investigated the effects of a standardized ethanolic-water extract of Ficus deltoidea Angustifolia (FD-A) on blood pressure (BP) in spontaneously hypertensive rats (SHR). Male SHR with systolic BP of >150 were divided into 4 groups (n = 8) and given either FD-A (800 or 1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 ml of distilled water (control) daily for 28 days. BP, body weight, food and water intake, serum and urinary electrolytes, endothelin-1 (ET-1), total antioxidant capacity (TAC) and components of the renin-angiotensin-aldosterone system were measured. Data were analyzed using ANOVA with statistical significance set at p SHR. This effect does not seem to involve the renin-angiotensin-aldosterone-system but might involve some other mechanisms. Abbreviations: FD-A: Ficus deltoidea Angustifolia; ACE: Angiotensin-converting enzyme; SHR: Spontaneously hypertensive rats; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; AUC: Area under curve; RAAS: Renin Angiotensin Aldosterone System.
    Matched MeSH terms: Rats, Inbred SHR
  19. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Peptides, 2008 Oct;29(10):1773-80.
    PMID: 18603328 DOI: 10.1016/j.peptides.2008.05.017
    Angiotensin II is known to act primarily on the angiotensin AT(1) receptors to mediate its physiological and pathological actions. Des-aspartate-angiotensin I (DAA-I) is a bioactive angiotensin peptide and have been shown to have contrasting vascular actions to angiotensin II. Previous work in this laboratory has demonstrated an overwhelming vasodepressor modulation on angiotensin II-induced vasoconstriction by DAA-I. The present study investigated the involvement of the AT(1) receptor in the actions of DAA-I on angiotensin II-induced vascular actions in the renal vasculature of normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR) and streptozotocin (STZ)-induced diabetic rats. The findings revealed that the angiotensin receptor in rat kidney homogenate was mainly of the AT(1) subtype. The AT(1) receptor density was significantly higher in the kidney of the SHR. The increase in AT(1) receptor density was also confirmed by RT-PCR and Western blot analysis. In contrast, AT(1) receptor density was significantly reduced in the kidney of the streptozotocin-induced diabetic rat. Perfusion with 10(-9)M DAA-I reduced the AT(1) receptor density in the kidneys of WKY and SHR rats suggesting that the previously observed vasodepressor modulation of the nonapeptide could be due to down-regulation or internalization of AT(1) receptors. RT-PCR and Western blot analysis showed no significant changes in the content of AT(1) receptor mRNA and protein. This supports the suggestion that DAA-I causes internalization of AT(1) receptors. In the streptozotocin-induced diabetic rat, no significant changes in renal AT(1) receptor density and expression were seen when its kidneys were similarly perfused with DAA-I.
    Matched MeSH terms: Rats, Inbred SHR
  20. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Eur J Pharmacol, 2007 Apr 30;561(1-3):144-50.
    PMID: 17320855
    Angiotensin 1-7, a heptapeptide derived from metabolism of either angiotensin I or angiotensin II, is a biologically active peptide of the renin-angiotensin system. The present study investigated the effect of angiotensin 1-7 on the vasopressor action of angiotensin II in the renal and mesenteric vasculature of Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) and streptozotocin-induced diabetic rats. Angiotensin II-induced dose-dependent vasoconstrictions in the renal vasculature. The pressor response was enhanced in the SHR and reduced in the streptozotocin-diabetic rat compared to WKY rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in the renal vasculature of WKY and SHR rats. However, the ability to reduce angiotensin II response was diminished in diabetic-induced rat kidneys. The effect of angiotensin 1-7 was not inhibited by 1-[(4-(Dimethylamino)-3-methylphenyl] methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate (PD123319), an angiotensin AT(2) receptor antagonist. (D-ALA(7))-Angiotensin I/II (1-7) (D-ALA) (an angiotensin 1-7 receptor antagonist), indomethacin (a cyclo-oxygenase inhibitor), and N(omega)-Nitro-L-Arginine Methyl Ester (L-NAME)(a nitric oxide synthetase inhibitor) abolished the attenuation by angiotensin 1-7 in both WKY rats and SHR, indicating that its action is mediated by angiotensin 1-7 receptor that is either coupled to the release of prostaglandins and/or nitric oxide. The vasopressor responses to angiotensin II in mesenteric vasculature bed was also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses to angiotensin II were relatively smaller in SHR but no significant difference was observed between WKY and streptozotocin-induced diabetic rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in WKY, SHR and diabetic-induced mesenteric bed. The attenuation was observed at the lower concentrations of angiotensin II in WKY and diabetic-induced rats but at higher concentrations in SHR. Similar observation as in the renal vasculature was seen with PD123319, D-ALA, and L-NAME. Indomethacin reversed the attenuation by angiotensin 1-7 only in the SHR mesenteric vascular bed. The present findings support the regulatory role of angiotensin 1-7 in the renal and mesenteric vasculature, which is differentially altered in hypertension and diabetes.
    Matched MeSH terms: Rats, Inbred SHR
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links