A handful of bioactive compounds from plants have been reported to possess platelet-activating factor (PAF) antagonist activity. However, their mode of action is not well understood. Selected bioactive compounds that exhibit PAF antagonist activity and synthetic PAF antagonists were subjected to docking simulations using the MOE 2007.09 software package. The docking study of PAF antagonists was carried out on the PAF receptor (PAFR) protein which involves in various pathological responses mediated by PAF. The docking results revealed that amentoflavone (3) showed good interactions with the PAFR model where the flavone and phenolic moieties were mostly involved in these interactions. Knowledge on PAF antagonists' interactions with the PAFR model is a useful screening tool of potential PAF antagonists prior to performing PAF inhibitory assay.
In the work presented here, photocatalytic systems using TiO2 and ZnO suspensions were utilized to evaluate the degradation of resorcinol (ReOH). The effects of catalyst concentration and solution pH were investigated and optimized using multivariate analysis based on response surface methodology. The results indicated that ZnO showed greater degradation and mineralization activities compared to TiO2 under optimized conditions. Using certain radical scavengers, a positive hole, together with the participation of hydroxyl radicals, were the oxidative species responsible for ReOH degradation on TiO2 whereas, the ZnO photocatalysis occurred principally via hydroxyl radicals. Some hitherto unreported pathway intermediates of ReOH degradation were identified using gas chromatography-mass spectrometry. A tentative reaction mechanism for the formation of these intermediates was proposed. Moreover, the figure-of-merit electrical energy per order was employed to estimate the electrical energy consumption.
Leishmaniasis is a vector-borne disease caused by the protozoan parasite Leishmania found in tropical and sub-tropical areas, affecting 12 million people around the world. Only few treatments are available against this disease and all of them present issues of toxicity and/or resistance. In this context, the development of new antileishmanial drugs specifically directed against a therapeutic target appears to be a promising strategy. The GDP-Mannose Pyrophosphorylase (GDP-MP) has been previously shown to be an attractive therapeutic target in Leishmania. In this study, a chemical library of 5000 compounds was screened on both L. infantum (LiGDP-MP) and human (hGDP-MP) GDP-MPs. From this screening, oncostemonol D was found to be active on both GDP-MPs at the micromolar level. Ten alkyl-resorcinol derivatives, of which oncostemonols E and J (2 and 3) were described for the first time from nature, were then evaluated on both enzymes as well as on L. infantum axenic and intramacrophage amastigotes. From this evaluation, compounds 1 and 3 inhibited both GDP-MPs at the micromolar level, and compound 9 displayed a three-times lower IC50 on LiGDP-MP, at 11 µM, than on hGDP-MP. As they displayed mild activities on the parasite, these compounds need to be further pharmacomodulated in order to improve their affinity and specificity to the target as well as their antileishmanial activity.
A methanol-soluble extract of the bark of Myristica cinnamomea was found to exhibit anti-quorum sensing activity, and subsequent bioassay-guided isolation led to the identification of the active compound malabaricone C (1). Compound 1 inhibited violacein production by Chromobacterium violaceum CV026 when grown in the presence of a cognate signaling molecule, N-3-oxohexanoyl-homoserine lactone. Furthermore, 1 inhibited the quorum sensing-regulated pyocyanin production and biofilm formation in Pseudomonas aeruginosa PAO1. These results suggest that the anti-quorum sensing activity of 1 and related molecules should be investigated further.
Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.
Glutamate receptors are the integral cellular components associated with excitotoxicity mechanism induced by the ischemic cascade events. Therefore the glutamate receptors have become the major molecular targets of neuroprotective agents in stroke researches. Recent studies have demonstrated that a Group I metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG) preconditioning elicits neuroprotection in the hippocampal slice cultures exposed to toxic level of N-methyl-d-aspartate (NMDA). We further investigated the preconditioning effects of (S)-3,5-DHPG on acute ischemic stroke rats. One 10 or 100μM of (S)-3,5-DHPG was administered intrathecally to Sprague-Dawley adult male rats, 2h prior to induction of acute ischemic stroke by middle cerebral artery occlusion (MCAO). After 24h, neurological deficits were evaluated by modified stroke severity scores and grid-walking test. All rats were sacrificed and infarct volumes were determined by 2,3,5-triphenyltetrazolium chloride staining. The serum level of neuron-specific enolase (NSE) of each rat was analyzed by enzyme-linked immunosorbent assay (ELISA). One and 10μM of (S)-3,5-DHPG preconditioning in the stroke rats showed significant improvements in motor impairment (P<0.01), reduction in the infarct volume (P<0.01) and reduction in the NSE serum level (P<0.01) compared to the control stroke rats. We conclude that 1 and 10μM (S)-3,5-DHPG preconditioning induced protective effects against acute ischemic insult in vivo.
1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed.