Displaying all 14 publications

Abstract:
Sort:
  1. Rumpf MC, Cronin JB, Mohamad IN, Mohamad S, Oliver JL, Hughes MG
    Phys Ther Sport, 2014 Feb;15(1):53-7.
    PMID: 23850007 DOI: 10.1016/j.ptsp.2013.03.001
    A possible injury risk factor is limb asymmetry, which may differ across maturation given the adult growth spurt. The aim of this study is to quantify the magnitude of asymmetry in a number of kinetic variables during a running task in male youth of different maturity status.
    Matched MeSH terms: Running/physiology*
  2. Willmott AGB, Hayes M, Waldock KAM, Relf RL, Watkins ER, James CA, et al.
    J Sports Sci, 2017 Nov;35(22):2249-2256.
    PMID: 27935427 DOI: 10.1080/02640414.2016.1265142
    Multistage, ultra-endurance events in hot, humid conditions necessitate thermal adaptation, often achieved through short term heat acclimation (STHA), to improve performance by reducing thermoregulatory strain and perceptions of heat stress. This study investigated the physiological, perceptual and immunological responses to STHA prior to the Marathon des Sables. Eight athletes (age 42 ± 4 years and body mass 81.9 ± 15.0 kg) completed 4 days of controlled hyperthermia STHA (60 min·day‒1, 45°C and 30% relative humidity). Pre, during and post sessions, physiological and perceptual measures were recorded. Immunological measures were recorded pre-post sessions 1 and 4. STHA improved thermal comfort (P = 0.02), sensation (P = 0.03) and perceived exertion (P = 0.04). A dissociated relationship between perceptual fatigue and Tre was evident after STHA, with reductions in perceived Physical (P = 0.04) and General (P = 0.04) fatigue. Exercising Tre and HR did not change (P > 0.05) however, sweat rate increased 14% (P = 0.02). No changes were found in white blood cell counts or content (P > 0.05). Four days of STHA facilitates effective perceptual adaptations, without compromising immune status prior to an ultra-endurance race in heat stress. A greater physiological strain is required to confer optimal physiological adaptations.
    Matched MeSH terms: Running/physiology*
  3. Wang X, Zhang K, Samsudin SB, Hassan MZB, Yaakob SSNB, Dong D
    J Sports Sci Med, 2024 Mar;23(1):177-195.
    PMID: 38455436 DOI: 10.52082/jssm.2024.177
    This meta-analysis aimed to examine the effects of plyometric training on physical fitness attributes in handball players. A systematic literature search across PubMed, SCOPUS, SPORTDiscus, and Web of Science identified 20 studies with 563 players. Plyometric training showed significant medium-to-large effects on various attributes: countermovement jump with arms (ES = 1.84), countermovement jump (ES = 1.33), squat jump (ES = 1.17), and horizontal jump (ES = 0.83), ≤ 10-m linear sprint time (ES = -1.12), > 10-m linear sprint time (ES = -1.46), repeated sprint ability with change-of-direction time (ES = -1.53), agility (ES = -1.60), maximal strength (ES = 0.52), and force-velocity (muscle power) (ES = 1.13). No significant impact on balance was found. Subgroup analysis indicated more pronounced agility improvements in players ≤ 66.6 kg compared to > 66.6 kg (ES = -1.93 vs. -0.23, p = 0.014). Additionally, greater improvements were observed in linear sprint and repeat sprint ability when comparing training durations of > 8 weeks with those ≤ 8 weeks (ES = -2.30 to -2.89 vs. ES = -0.92 to -0.97). In conclusion, plyometric training effectively improves various physical fitness attributes, including jump performance, linear sprint ability, maximal strength, muscle power and agility.
    Matched MeSH terms: Running/physiology
  4. Gindre C, Lussiana T, Hebert-Losier K, Mourot L
    Int J Sports Med, 2016 Jan;37(1):25-9.
    PMID: 26509380 DOI: 10.1055/s-0035-1555931
    Biomechanical parameters are often analyzed independently, although running gait is a dynamic system wherein changes in one parameter are likely to affect another. Accordingly, the Volodalen® method provides a model for classifying running patterns into 2 categories, aerial and terrestrial, using a global subjective rating scoring system. We aimed to validate the Volodalen® method by verifying whether the aerial and terrestrial patterns, defined subjectively by a running coach, were associated with distinct objectively-measured biomechanical parameters. The running patterns of 91 individuals were assessed subjectively using the Volodalen® method by an expert running coach during a 10-min running warm-up. Biomechanical parameters were measured objectively using the OptojumpNext® during a 50-m run performed at 3.3, 4.2, and 5 m·s(-1) and were compared between aerial- and terrestrial-classified subjects. Longer contact times and greater leg compression were observed in the terrestrial compared to the aerial runners. The aerial runners exhibited longer flight time, greater center of mass displacement, maximum vertical force and leg stiffness than the terrestrial ones. The subjective categorization of running patterns was associated with distinct objectively-quantified biomechanical parameters. Our results suggest that a subjective holistic assessment of running patterns provides insight into the biomechanics of running gaits of individuals.
    Matched MeSH terms: Running/physiology*
  5. Lussiana T, Gindre C, Mourot L, Hébert-Losier K
    Eur J Sport Sci, 2017 Aug;17(7):847-857.
    PMID: 28488928 DOI: 10.1080/17461391.2017.1325072
    Running patterns are often categorized into subgroups according to common features before data analysis and interpretation. The Volodalen® method is a simple field-based tool used to classify runners into aerial or terrestrial using a 5-item subjective rating scale. We aimed to validate the Volodalen® method by quantifying the relationship between its subjective scores and 3D biomechanical measures. Fifty-four runners ran 30 s on a treadmill at 10, 12, 14, 16, and 18 km h-1 while their kinematics were assessed subjectively using the Volodalen® method and objectively using 3D motion capture. For each runner and speed, two researchers scored the five Volodalen® items on a 1-to-5 scale, which addressed vertical oscillation, upper-body motion, pelvis and foot position at ground contact, and footstrike pattern. Seven 3D biomechanical parameters reflecting the subjective items were also collected and correlated to the subjective scores. Twenty-eight runners were classified as aerial and 26 as terrestrial. Runner classification did not change with speed, but the relative contribution of the biomechanical parameters to the subjective classification was speed dependent. The magnitude of correlations between subjective and objective measures ranged from trivial to very large. Five of the seven objective parameters significantly differed between aerial and terrestrial runners, and these parameters demonstrated the strongest correlations to the subjective scores. Our results support the validity of the Volodalen® method, whereby the visual appreciation of running gait reflected quantifiable objective parameters. Two minor modifications to the method are proposed to simplify its use and improve agreement between subjective and objective measures.
    Matched MeSH terms: Running/physiology*
  6. Ngoh KJ, Gouwanda D, Gopalai AA, Chong YZ
    J Biomech, 2018 07 25;76:269-273.
    PMID: 29945786 DOI: 10.1016/j.jbiomech.2018.06.006
    Wearable technology has been viewed as one of the plausible alternatives to capture human motion in an unconstrained environment, especially during running. However, existing methods require kinematic and kinetic measurements of human body segments and can be complicated. This paper investigates the use of neural network model (NN) and accelerometer to estimate vertical ground reaction force (VGRF). An experimental study was conducted to collect sufficient samples for training, validation and testing. The estimated results were compared with VGRF measured using an instrumented treadmill. The estimates yielded an average root mean square error of less than 0.017 of the body weight (BW) and a cross-correlation coefficient greater than 0.99. The results also demonstrated that NN could estimate impact force and active force with average errors ranging between 0.10 and 0.18 of BW at different running speeds. Using NN and uniaxial accelerometer can (1) simplify the estimation of VGRF, (2) reduce the computational requirement and (3) reduce the necessity of multiple wearable sensors to obtain relevant parameters.
    Matched MeSH terms: Running/physiology*
  7. Lussiana T, Patoz A, Gindre C, Mourot L, Hébert-Losier K
    J Exp Biol, 2019 03 18;222(Pt 6).
    PMID: 30787136 DOI: 10.1242/jeb.192047
    A lower duty factor (DF) reflects a greater relative contribution of leg swing versus ground contact time during the running step. Increasing time on the ground has been reported in the scientific literature to both increase and decrease the energy cost (EC) of running, with DF reported to be highly variable in runners. As increasing running speed aligns running kinematics more closely with spring-mass model behaviours and re-use of elastic energy, we compared the centre of mass (COM) displacement and EC between runners with a low (DFlow) and high (DFhigh) duty factor at typical endurance running speeds. Forty well-trained runners were divided in two groups based on their mean DF measured across a range of speeds. EC was measured from 4 min treadmill runs at 10, 12 and 14 km h-1 using indirect calorimetry. Temporal characteristics and COM displacement data of the running step were recorded from 30 s treadmill runs at 10, 12, 14, 16 and 18 km h-1 Across speeds, DFlow exhibited more symmetrical patterns between braking and propulsion phases in terms of time and vertical COM displacement than DFhigh DFhigh limited global vertical COM displacements in favour of horizontal progression during ground contact. Despite these running kinematics differences, no significant difference in EC was observed between groups. Therefore, both DF strategies seem energetically efficient at endurance running speeds.
    Matched MeSH terms: Running/physiology*
  8. Daneshjoo A, Mokhtar AH, Rahnama N, Yusof A
    PLoS One, 2012;7(12):e51568.
    PMID: 23251579 DOI: 10.1371/journal.pone.0051568
    The study investigated the effects of FIFA 11+ and HarmoKnee, both being popular warm-up programs, on proprioception, and on the static and dynamic balance of professional male soccer players.
    Matched MeSH terms: Running/physiology
  9. Burdon CA, Johnson NA, Chapman PG, Munir Che Muhamed A, O'Connor HT
    Int J Sport Nutr Exerc Metab, 2013 Aug;23(4):418-24.
    PMID: 23295183
    The aim of this study was to measure the effect of environmental conditions and aid-station beverage- cooling practices on the temperature of competitor beverages.
    Matched MeSH terms: Running/physiology*
  10. James CA, Richardson AJ, Watt PW, Willmott AGB, Gibson OR, Maxwell NS
    J Strength Cond Res, 2018 May;32(5):1366-1375.
    PMID: 28486332 DOI: 10.1519/JSC.0000000000001979
    James, CA, Richardson, AJ, Watt, PW, Willmott, AGB, Gibson, OR, and Maxwell, NS. Short-term heat acclimation and precooling, independently and combined, improve 5-km time trial performance in the heat. J Strength Cond Res 32(5): 1366-1375, 2018-Following heat acclimation (HA), endurance running performance remains impaired in hot vs. temperate conditions. Combining HA with precooling (PC) demonstrates no additive benefit in intermittent sprint, or continuous cycling exercise protocols, during which heat strain may be less severe compared to endurance running. This study investigated the effect of short-term HA (STHA) combined with mixed methods PC, on endurance running performance and directly compared PC and HA. Nine amateur trained runners completed 5-km treadmill time trials (TTs) in the heat (32° C, 60% relative humidity) under 4 conditions; no intervention (CON), PC, short-term HA (5 days-HA) and STHA with PC (HA + PC). Mean (±SD) performance times were; CON 1,476 (173) seconds, PC 1,421 (146) seconds, HA 1,378 (116) seconds and HA + PC 1,373 (121) seconds. This equated to the following improvements versus CON; PC -3.7%, HA -6.6% and HA + PC -7.0%. Statistical differences were only observed between HA and CON (p = 0.004, d = 0.68, 95% CI [-0.27 to 1.63]) however, similar effect sizes were observed for HA + PC vs. CON (d = 0.70, 95% CI [-0.25 to 1.65]), with smaller effects between PC vs. CON (d = 0.34, 95% CI [-0.59 to 1.27]), HA vs. PC (d = 0.33, 95% CI [-0.60 to 1.26]) and HA + PC vs. PC (d = 0.36, 95% CI [-0.57 to 1.29]). Pilot testing revealed a TT typical error of 16 seconds (1.2%). Precooling offered no further benefit to performance in the acclimated individual, despite modest alleviation of physiological strain. Maintenance of running speed in HA + PC, despite reduced physiological strain, may indicate an inappropriate pacing strategy therefore, further familiarization is recommended to optimize a combined strategy. Finally, these data indicate HA, achieved through cycle training, yields a larger ergogenic effect than PC on 5-km running performance in the heat, although PC remains beneficial when HA is not possible.
    Matched MeSH terms: Running/physiology*
  11. Noroozi S, Ong ZC, Khoo SY, Aslani N, Sewell P
    Prosthet Orthot Int, 2019 Feb;43(1):62-70.
    PMID: 30051756 DOI: 10.1177/0309364618789449
    BACKGROUND:: The current method of prescribing composite running-specific energy-storing-and-returning feet is subjective and is based only on the amputee's static body weight/mass.

    OBJECTIVES:: The aim was to investigate their dynamic characteristics and create a relationship between these dynamic data and the prescription of foot.

    STUDY DESIGN:: Experimental Assessment.

    METHODS:: This article presents the modal analysis results of the full range of Össur Flex-Run™ running feet that are commercially available (1LO-9LO) using experimental modal analysis technique under a constant mass at 53 kg and boundary condition.

    RESULTS:: It was shown that both the undamped natural frequency and stiffness increase linearly from the lowest to the highest stiffness category of foot which allows for a more informed prescription of foot when tuning to a matched natural frequency. The low damping characteristics determined experimentally that ranged between 1.5% and 2.0% indicates that the feet require less input energy to maintain the steady-state cyclic motion before take-off from the ground. An analysis of the mode shapes also showed a unique design feature of these feet that is hypothesised to enhance their performance.

    CONCLUSION:: A better understanding of dynamic characteristics of the feet can help tune the feet to the user's requirements in promoting a better gait performance.

    CLINICAL RELEVANCE: The dynamic data determined from this study are needed to better inform the amputees in predicting the natural frequency of the foot prescribed. The amputees can intuitively tune the cyclic body rhythm during walking or running to match with the natural frequency. This could eventually promote a better gait performance.

    Matched MeSH terms: Running/physiology
  12. Singh R, Sirisinghe RG
    Singapore Med J, 1999 Feb;40(2):84-7.
    PMID: 10414164
    To investigate the acute effects of an 18 km run on the haematological and plasma electrolyte parameters, in recreational runners under conditions of high temperatures and humidity.
    Matched MeSH terms: Running/physiology*
  13. Sharifah Maimunah SM, Hashim HA
    Percept Mot Skills, 2016 Feb;122(1):227-37.
    PMID: 27420318 DOI: 10.1177/0031512515625383
    This study compares two versions of progressive muscle relaxation (PMR) training (7 and 16 muscle groups) on oxygen consumption (VO2), heart rates, rating of perceived exertion and choice reaction time. Football (soccer) players (N = 26; M age = 13.4 yr., SD = 0.5) were randomly assigned to either 7 muscle groups PMR, 16 muscle groups PMR, or a control group. PMR training requires the participants to tense a muscle, hold the muscle contraction, and then relax it. Measurement was conducted prior to and after the completion of 12 sessions of PMR. The dependent variables were measured following four bouts of intermittent exercise consisting of 12 min. of running at 60% VO2max for 10 min. followed by running at 90% VO2max for 2 min. with a 3-min. rest for each bout. Lower VO2, heart rate, perceived exertion, and quicker reaction time were expected in both relaxation groups compared to the control group. The results revealed a significant reduction in heart rates and choice reaction time for both relaxation groups, but the longer version produced significantly quicker choice reaction time.
    Matched MeSH terms: Running/physiology
  14. Teichmann J, Suwarganda EK, Lendewig C, Wilson BD, Yeo WK, Aziz RA, et al.
    J Sport Rehabil, 2016 May;25(2):126-32.
    PMID: 25658597 DOI: 10-1123/jsr.2014-0280
    CONTEXT: The Unexpected-Disturbance Program (UDP) promotes exercises in response to so-called involuntary short- to midlatency disturbances.

    OBJECTIVE: This study investigated the effectiveness of the UDP in the last 6 wk of rehabilitation.

    DESIGN: Pre-post study with 2-tailed paired t tests for limited a priori comparisons to examine differences.

    SETTING: National Sports Institute of Malaysia.

    PARTICIPANTS: 24 Malaysian national athletes.

    INTERVENTIONS: 7 sessions/wk of 90 min with 3 sessions allocated for 5 or 6 UDP exercises.

    MAIN OUTCOMES: Significant improvements for men and women were noted. Tests included 20-m sprint, 1-repetition-maximum single-leg press, standing long jump, single-leg sway, and a psychological questionnaire.

    RESULTS: For men and women, respectively, average strength improvements of 22% (d = 0.96) and 29% (d = 1.05), sprint time of 3% (d = 1.06) and 4% (d = 0.58), and distance jumped of 4% (d = 0.59) and 6% (d = 0.47) were noted. In addition, athletes reported improved perceived confidence in their abilities. All athletes improved in each functional test except for long jump in 2 of the athletes. Mediolateral sway decreased in 18 of the 22 athletes for the injured limb.

    CONCLUSION: The prevention training with UDP resulted in improved conditioning and seems to decrease mediolateral sway.

    Matched MeSH terms: Running/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links