METHODS: Using the Center for Disease Control and Prevention (CDC) bottle assays, the insecticide resistance status of nine different Ae. aegypti strains from Selangor was accessed. Synergism tests and biochemical assays were conducted to further understand the metabolic mechanisms of insecticide resistance. Polymerase chain reaction (PCR) amplification and sequencing of the IIP-IIS6 as well as IIIS4-IIIS6 regions of the sodium channel gene were performed to enable comparisons between susceptible and resistant mosquito strains. Additionally, genomic DNA was used for allele-specific PCR (AS-PCR) genotyping of the gene to detect the presence of F1534C, V1016G and S989P mutations.
RESULTS: Adult female Ae. aegypti from various locations were susceptible to malathion and propoxur. However, they exhibited different levels of resistance against dichlorodiphenyltrichloroethane (DDT) and pyrethroids. The results of synergism tests and biochemical assays indicated that the mixed functions of oxidases and glutathione S-transferases contributed to the DDT and pyrethroid resistance observed in the present study. Besides detecting three single kdr mutations, namely F1534C, V1016G and S989P, co-occurrence of homozygous V1016G/S989P (double allele) and F1534C/V1016G/S989P (triple allele) mutations were also found in Ae. aegypti. As per the results, the three kdr mutations had positive correlations with the expressions of resistance to DDT and pyrethroids.
CONCLUSIONS: In view of the above outcomes, it is important to seek new tools for vector management instead of merely relying on insecticides. If the latter must be used, regular monitoring of insecticide resistance should also be carried out at all dengue epidemic areas. Since the eggs of Ae. aegypti can be easily transferred from one location to another, it is probable that insecticide-resistant Ae. aegypti can be found at non-dengue outbreak sites as well.
METHODS: WHO resistance bioassays of mosquitoes with deltamethrin, permethrin and DDT were used in conjunction with TaqMan® SNP Genotyping Assays to characterize mutation profiles of Ae. aegypti.
RESULTS: Screening of the voltage-sensitive sodium channel (Vssc), the pyrethroid target site, revealed mutations at codons 989, 1016 and 1534 in Ae. aegypti from two districts of Jeddah. The triple mutant homozygote (1016G/1534C/989P) was confirmed from Al Safa and Al Rawabi. Bioassays with pyrethroids (Type I and II) and DDT showed that mosquitoes were resistant to each of these compounds based on WHO definitions. An association between Vssc mutations and resistance was established for the Type II pyrethroid, deltamethrin, with one genotype (989P/1016G/1534F) conferring a survival advantage over two others (989S/1016V/1534C and the triple heterozygote). An indication of synergism of Type I pyrethroid activity with piperonyl butoxide suggests that detoxification by cytochrome P450s accounts for some of the pyrethroid resistance response in Ae. aegypti populations from Jeddah.
CONCLUSIONS: The results provide a baseline for monitoring and management of resistance as well as knowledge of Vssc genotype frequencies required in Wolbachia release populations to ensure homogeneity with the target field population. Vssc mutation haplotypes observed show some similarity with those from Ae. aegypti in southeast Asia and the Indo-Pacific, but the presence of the triple mutant haplotype in three genotypes indicates that the species in this region may have a unique population history.
METHODS: Ovariectomized female normotensive Wistar Kyoto (WKY) and Spontaneous hypertensive (SHR) rats were given six weeks treatment with testosterone via subcutaneous silastic implant. The rats were anesthetized and mean arterial pressure (MAP) was measured via direct cannulation of the carotid artery. Animals were sacrificed and kidneys were removed and subjected for α, β and γ-ENaC protein and mRNA expression analyses by Western blotting and Real-time polymerase chain reaction (qPCR), respectively. Distributions of α, β and γ-ENaC proteins in kidneys were observed by immunofluorescence. Plasma testosterone, aldosterone, electrolytes, osmolality, urea and creatinine levels were determined by biochemical assays. Analysis were also performed in non-testosterone treated orchidectomized and sham-operated male WKY and SHR rats.
RESULTS: Treatment of ovariectomized female WKY and SHR rats with testosterone causes increased in MAP but decreased in plasma aldosterone, sodium (Na+), osmolality and expression and distribution of α, β and γ-ENaC subunits in the kidneys. Orchidectomy decreased the MAP but increased plasma aldosterone, Na+, osmolality and α, β and γ-ENaC expression and distribution in the kidneys of male WKY and SHR rats.
CONCLUSIONS: Decreased in plasma aldosterone, Na+ and ENaC levels in kidneys under testosterone influence indicated that testosterone-induced increased in MAP were not due to increased plasma aldosterone and ENaC levels in kidneys, and thus the testosterone effect on MAP likely involve other mechanisms.