Displaying all 6 publications

Abstract:
Sort:
  1. Yang F, Xu X, Wang W, Ma J, Wei D, He P, et al.
    PLoS One, 2017;12(5):e0177509.
    PMID: 28498839 DOI: 10.1371/journal.pone.0177509
    Estimating balanced nutrient requirements for soybean (Glycine max [L.] Merr) in China is essential for identifying optimal fertilizer application regimes to increase soybean yield and nutrient use efficiency. We collected datasets from field experiments in major soybean planting regions of China between 2001 and 2015 to assess the relationship between soybean seed yield and nutrient uptake, and to estimate nitrogen (N), phosphorus (P), and potassium (K) requirements for a target yield of soybean using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model. The QUEFTS model predicted a linear-parabolic-plateau curve for the balanced nutrient uptake with a target yield increased from 3.0 to 6.0 t ha-1 and the linear part was continuing until the yield reached about 60-70% of the potential yield. To produce 1000 kg seed of soybean in China, 55.4 kg N, 7.9 kg P, and 20.1 kg K (N:P:K = 7:1:2.5) were required in the above-ground parts, and the corresponding internal efficiencies (IE, kg seed yield per kg nutrient uptake) were 18.1, 126.6, and 49.8 kg seed per kg N, P, and K, respectively. The QUEFTS model also simulated that a balanced N, P, and K removal by seed which were 48.3, 5.9, and 12.2 kg per 1000 kg seed, respectively, accounting for 87.1%, 74.1%, and 60.8% of the total above-ground parts, respectively. These results were conducive to make fertilizer recommendations that improve the seed yield of soybean and avoid excessive or deficient nutrient supplies. Field validation indicated that the QUEFTS model could be used to estimate nutrient requirements which help develop fertilizer recommendations for soybean.
    Matched MeSH terms: Soybeans/metabolism*
  2. Ali NM, Yeap SK, Yusof HM, Beh BK, Ho WY, Koh SP, et al.
    J Sci Food Agric, 2016 Mar 30;96(5):1648-58.
    PMID: 26009985 DOI: 10.1002/jsfa.7267
    BACKGROUND: Mung bean and soybean have been individually reported previously to have antioxidant, cytotoxic and immunomodulatory effects, while fermentation is a well-known process to enhance the bioactive compounds that contribute to higher antioxidant, cytotoxic and immunomodulation effects. In this study, the free amino acids profile, soluble phenolic acids content, antioxidants, cytotoxic and immunomodulatory effects of fermented and non-fermented mung bean and soybean were compared.

    RESULTS: Fermented mung bean was recorded to have the highest level of free amino acids, soluble phenolic acids (especially protocatechuic acid) and antioxidant activities among all the tested products. Both fermented mung bean and soybean possessed cytotoxicity activities against breast cancer MCF-7 cells by arresting the G0/G1 phase followed by apoptosis. Moreover, fermented mung bean and soybean also induced splenocyte proliferation and enhanced the levels of serum interleukin-2 and interferon-γ.

    CONCLUSION: Augmented amounts of free amino acids and phenolic acids content after fermentation enhanced the antioxidants, cytotoxicity and immunomodulation effects of mung bean and soybean. More specifically, fermented mung bean showed the best effects among all the tested products. This study revealed the potential of fermented mung bean and soybean as functional foods for maintenance of good health.

    Matched MeSH terms: Soybeans/metabolism
  3. Toopkanloo SP, Tan TB, Abas F, Azam M, Nehdi IA, Tan CP
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322600 DOI: 10.3390/molecules25245873
    In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280-320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.
    Matched MeSH terms: Soybeans/metabolism*
  4. Jafari Khorshidi K, Abedi Chemazkoti S, Kioumarsi H, Shariman Yahya Z
    Pak J Biol Sci, 2013 Sep 01;16(17):898-900.
    PMID: 24498847
    This research was conducted in order to investigate rumen degradability of some factors includes; Dray Matter (DM), Organic Matter (OM), Crude Protein (CP), Acid Detergent Fiber (ADF) in three different plant protein supplements includes; soybean, canola and cottonseed meal. The experiment was carried out using in three castrated and fistulated male Zel sheep. Each feedstuff was weighed into duplicate nylon bags and incubated in each of the three rumen fistulated sheep for 0, 2, 4, 8, 16, 24 and 48 h. Results revealed that effective degradability of DM of soybean, canola and cottonseed meal were 55.8, 73.8 and 48.5%, respectively. Effective degradabilities of the CP in feedstuffs were 55.8, 62 and 48.3% for the respective feedstuffs. Effective degradabilities of the OM were 55.7, 56.4 and 47.4%, respectively. Results also showed that effective degradabilities of the ADF were 55, 56.4 and 37.6, respectively. According to the results the researchers concluded that canola and soybean were more degradable in the rumen of the sheep while cottonseed meal were less degradable and, hence resulted in higher rumen undegradable protein.
    Matched MeSH terms: Soybeans/metabolism*
  5. Moritz KB, Kopp T, Stingl G, Bublin M, Breiteneder H, Wöhrl S
    Allergol Immunopathol (Madr), 2011 Jul-Aug;39(4):244-5.
    PMID: 21741147 DOI: 10.1016/j.aller.2010.06.010
    Matched MeSH terms: Soybeans/metabolism
  6. Arif SA, Hamilton RG, Yusof F, Chew NP, Loke YH, Nimkar S, et al.
    J Biol Chem, 2004 Jun 04;279(23):23933-41.
    PMID: 15024009
    Recurring reports of a highly allergenic 42-46-kDa protein in Hevea brasiliensis latex appeared to have been resolved with the discovery of a 43-kDa allergenic latex protein that was a homologue to patatin. However, the low to moderate prevalence of sensitization to the protein, designated Hev b 7, among latex-allergic patients could not adequately explain the frequent observations of the 42-46-kDa allergen. This led to the hypothesis that another, more allergenic protein of a similar molecular mass existed in Hevea latex. We report the isolation and purification of a 42.98-kDa latex glycoprotein showing homology to the early nodule-specific protein (ENSP) of the legumes Medicago sativa, Medicago truncatula, and Glycine max. The protein is allergenic, being recognized by immunoglobulin E (IgE) in sera from latex-allergic patients. The IgE epitope resides on the carbohydrate moiety of the protein, and the presence of a similar carbohydrate component on potato tuber patatin enables the latter to inhibit IgE binding to the ENSP homologue. The cDNA encoding the ENSP homologue was isolated by reverse transcription-PCR and cloned. The protein predicted from the cDNA sequence has 391 amino acids, the first 26 of which constitute a putative signal peptide. The deduced molecular mass of the mature protein is 40.40 kDa, while its isoelectric point is estimated at 5.0. The discrepancy between the predicted and observed molecular mass might be due to glycosylation, for which three N-sites on the protein are predicted. The purified protein showed lipase and esterase activities and may be involved in plant defense.
    Matched MeSH terms: Soybeans/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links