Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Hamid AA, Ruszymah BH, Aminuddin BS, Sathappan S, Chua KH
    Med J Malaysia, 2008 Jul;63 Suppl A:9-10.
    PMID: 19024959
    Human adipose-derived stem cells (HADSC) have demonstrated the capacity of differentiating into bone depending on the specific induction stimuli and growth factors. However, investigation on stem cell characteristic after osteogenic differentiation is still lacking. The goal of this study was to investigate the differential expression of sternness and osteogenic genes in non-induced HADSC compared with HADSC after osteogenic induction using quantitative Real Time RT-PCR. Our results showed that OCT-4, REX-1, FZD9, OSC, RUNX, and ALP were up regulated after osteogenic induction. This may indicated that HADSCs after osteogenic induction still possessed some stemness properties.
    Matched MeSH terms: Stem Cells/physiology
  2. Totey S, Totey S, Pal R, Pal R
    J Stem Cells, 2009;4(2):105-21.
    PMID: 20232596
    There has been unprecedented interest in stem cell research mainly because of their true potential and hope that they offer to the patients as a cell therapy with the prospect to treat hitherto incurable diseases. Despite the worldwide interest and efforts that have been put in this research, major fundamental issues are still unresolved. Adult stem cells such as hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC) are already under clinical applications and there are several examples of plasticity and self-renewal where adult stem cells or their precursor cells can be re-programmed by extra cellular cues or internal cues to alter their character in a way that could have important application for cell therapy and regenerative medicine. From a clinical perspective, no other area of stem cell biology has been applied as successfully as has transplantation of bone marrow stem cells and cord blood stem cells for the treatment of hematological diseases. In the last few years, research in stem cell biology has expanded staggeringly, engendering new perspectives concerning the identity, origin, and full therapeutic potential of tissue-specific stem cells. This review will focus on the use of adult stem cells, its biology in the context of cell plasticity and their therapeutic potential for repair of different tissues and organs.
    Matched MeSH terms: Hematopoietic Stem Cells/physiology; Adult Stem Cells/physiology*
  3. Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB, et al.
    J Endod, 2010 Sep;36(9):1504-15.
    PMID: 20728718 DOI: 10.1016/j.joen.2010.05.006
    Lately, several new stem cell sources and their effective isolation have been reported that claim to have potential for therapeutic applications. However, it is not yet clear which type of stem cell sources are most potent and best for targeted therapy. Lack of understanding of nature of these cells and their lineage-specific propensity might hinder their full potential. Therefore, understanding the gene expression profile that indicates their lineage-specific proclivity is fundamental to the development of successful cell-based therapies.
    Matched MeSH terms: Stem Cells/physiology; Pluripotent Stem Cells/physiology; Adult Stem Cells/physiology
  4. Hayati AR, Nur Fariha MM, Tan GC, Tan AE, Chua K
    Arch Med Res, 2011 May;42(4):291-300.
    PMID: 21820607 DOI: 10.1016/j.arcmed.2011.06.005
    Placenta as a fetomaternal organ is a potential source of fetal as well as maternal stem cells. This present study describes novel properties of the cells isolated from the maternal part of term placenta membrane, the decidua basalis.
    Matched MeSH terms: Stem Cells/physiology*
  5. Das AK, Gopurappilly R, Parhar I
    Curr Stem Cell Res Ther, 2011 Jun;6(2):93-104.
    PMID: 21190537
    Spinal cord injuries (SCIs) are a common form of trauma that leaves a huge trail of morbidity and human suffering in its wake. They occur mostly among the young, causing severe physical, psychological, social and economic burdens. The treatment of this condition has rather been disappointing; most of the management strategies being mainly supportive and prophylactic. In recent years there has been an emerging interest in the use of stem cells to regenerate the nervous tissue that has been damaged or lost. Although there has been much hype and unfounded hope, modest successes have been witnessed, and it is possible that these therapeutic strategies may have much more to offer in the future. This paper will review the current strategies of exploring cell-based therapies, mainly different types of stem cells to treat SCI along with the evidence that has been accumulated over the past decade in a rational bench-to-bedside approach. Furthermore, critical aspects such as the mode of delivery and ethical considerations are also discussed along with feasible suggestions for future translational research to provide a contextual picture of the current state of advancements in this field. The impediments to regeneration in the site of injury are briefly explained along with the benefits and drawbacks of different cell types used in the treatment of this condition. We hope that this review will offer a significant insight into this challenging clinical condition.
    Matched MeSH terms: Stem Cells/physiology*
  6. Wong RS
    Exp Diabetes Res, 2011;2011:406182.
    PMID: 21747828 DOI: 10.1155/2011/406182
    Diabetes mellitus is a chronic disease with many debilitating complications. Treatment of diabetes mellitus mainly revolves around conventional oral hypoglycaemic agents and insulin replacement therapy. Recently, scientists have turned their attention to the generation of insulin-producing cells (IPCs) from stem cells of various sources. To date, many types of stem cells of human and animal origins have been successfully turned into IPCs in vitro and have been shown to exert glucose-lowering effect in vivo. However, scientists are still faced with the challenge of producing a sufficient number of IPCs that can in turn produce sufficient insulin for clinical use. A careful choice of stem cells, methods, and extrinsic factors for induction may all be contributing factors to successful production of functional beta-islet like IPCs. It is also important that the mechanism of differentiation and mechanism by which IPCs correct hyperglycaemia are carefully studied before they are used in human subjects.
    Matched MeSH terms: Stem Cells/physiology*
  7. Mohamad Buang ML, Seng HK, Chung LH, Saim AB, Idrus RB
    Arch Med Res, 2012 Jan;43(1):83-8.
    PMID: 22374243 DOI: 10.1016/j.arcmed.2012.01.012
    BACKGROUND AND AIMS: Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs).

    METHODS: Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test.

    RESULTS: Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium.

    CONCLUSIONS: These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future.

    Matched MeSH terms: Adult Stem Cells/physiology*; Induced Pluripotent Stem Cells/physiology*
  8. Yahaya B
    ScientificWorldJournal, 2012;2012:961684.
    PMID: 23049478 DOI: 10.1100/2012/961684
    Understanding the mechanisms underlying the process of regeneration and repair of airway epithelial structures demands close characterization of the associated cellular and molecular events. The choice of an animal model system to study these processes and the role of lung stem cells is debatable since ideally the chosen animal model should offer a valid comparison with the human lung. Species differences may include the complex three-dimensional lung structures, cellular composition of the lung airway as well as transcriptional control of the molecular events in response to airway epithelium regeneration, and repair following injury. In this paper, we discuss issues related to the study of the lung repair and regeneration including the role of putative stem cells in small- and large-animal models. At the end of this paper, the author discuss the potential for using sheep as a model which can help bridge the gap between small-animal model systems and humans.
    Matched MeSH terms: Stem Cells/physiology
  9. Dutta S, Singh G, Sreejith S, Mamidi MK, Husin JM, Datta I, et al.
    CNS Neurosci Ther, 2013 Jan;19(1):5-11.
    PMID: 23253099 DOI: 10.1111/cns.12027
    Neurodegenerative diseases are devastating because they cause increasing loss of cognitive and physical functions and affect an estimated 1 billion individuals worldwide. Unfortunately, no drugs are currently available to halt their progression, except a few that are largely inadequate. This mandates the search of new treatments for these progressively degenerative diseases. Neural stem cells (NSCs) have been successfully isolated, propagated, and characterized from the adult brains of mammals, including humans. The confirmation that neurogenesis occurs in the adult brain via NSCs opens up fresh avenues for treating neurological problems. The proof-of-concept studies demonstrating the neural differentiation capacity of stem cells both in vitro and in vivo have raised widespread enthusiasm toward cell-based interventions. It is anticipated that cell-based neurogenic drugs may reverse or compensate for deficits associated with neurological diseases. The increasing interest of the private sector in using human stem cells in therapeutics is evidenced by launching of several collaborative clinical research activities between Pharma giants and research institutions or small start-up companies. In this review, we discuss the major developments that have taken place in this field to position stem cells as a prospective candidate drug for the treatment of neurological disorders.
    Matched MeSH terms: Pluripotent Stem Cells/physiology; Neural Stem Cells/physiology
  10. Romli F, Alitheen NB, Hamid M, Ismail R, Abd Rahman NM
    J Cell Biochem, 2013 Jun;114(6):1230-7.
    PMID: 23239017 DOI: 10.1002/jcb.24477
    The first successful attempt to reprogram somatic cell into embryonic-like stem cell was achieved on 2006. Since then, it had sparked a race against time to bring this wonderful invention from bench to bedside but it is not easily achieved due to severe problems in term of epigenetic and genomic. With each problem arise, new technique and protocol will be constructed to try to overcome it. This review addresses the various techniques made available to create iPSC with problems hogging down the technique.
    Matched MeSH terms: Induced Pluripotent Stem Cells/physiology*
  11. Kamarul T
    Expert Rev Clin Pharmacol, 2013 Jul;6(4):363-5.
    PMID: 23927663 DOI: 10.1586/17512433.2013.811804
    The World Stem Cells & Regenerative Medicine Congress Asia 2013 held in Singapore from 19-21 March 2013 was attended by over 2000 industry attendees and 5000 registered visitors. The focus of the congress was to discuss potential uses of stem cells for various diagnostic and therapeutic applications, their market opportunity and the latest R&D, which would potentially find its way into the market in not too distant future. In addition to the traditional lectures presented by academic and industry experts, there were forums, discussions, posters and exhibits, which provided various platforms for researchers, potential industry partners and even various interest groups to discuss prospective development of the stem cell-related industry.
    Matched MeSH terms: Stem Cells/physiology*
  12. Reshak AH, Shahimin MM, Buang F
    Prog Biophys Mol Biol, 2013 Nov;113(2):295-8.
    PMID: 24080186 DOI: 10.1016/j.pbiomolbio.2013.09.001
    Mammalian adipose tissue derived stem cells (AT-SC) have a tremendous potential in regenerative medicine for tissue engineering and somatic nuclear transfer (SNT). The isolation methods of human and bovine adipose tissue derived stem cells are compared in this paper to determine the feasibility and optimum method of isolation. The optimum isolation method will reduce the processing time, efforts and money as isolation is the first crucial and important step in stem cells research. Human abdominal subcutaneous adipose tissue and bovine abdominal subcutaneous adipose tissue are digested in three collagenase type 1 concentration 0.075%, 0.3% and 0.6% agitated at 1 h and 2 h under 37 °C in 5% CO2 incubator. The cultures are then morphologically characterised. Human adipose tissue stem cells are found to be best isolated using abdominal subcutaneous depot, using 0.075% collagenase type 1 agitated at 1 h under 37 °C in CO2 incubator. While bovine adipose tissue derived stem cells are best isolated using abdominal subcutaneous depot, using 0.6% collagenase type 1 agitated at 2 h under 37 °C in CO2 incubator.
    Matched MeSH terms: Stem Cells/physiology*
  13. Chua KH, Zaman Wan Safwani WK, Hamid AA, Shuhup SK, Mohd Haflah NH, Mohd Yahaya NH
    Cytotherapy, 2014 May;16(5):599-611.
    PMID: 24290076 DOI: 10.1016/j.jcyt.2013.08.013
    The use of retropatellar fat pad-derived mesenchymal stromal cells (RFMSCs) for cell-based therapy, particularly for cartilage repair, has been reported by several investigators in recent years. However, the effects of the donor's age and medical condition on the characteristics of RFMSCs have not been well established. The aim of this study was to determine whether age and medical condition can reduce the multipotential of stem cells isolated from the retropatellar fat pad.
    Matched MeSH terms: Stem Cells/physiology*
  14. Han YL, Wang S, Zhang X, Li Y, Huang G, Qi H, et al.
    Drug Discov Today, 2014 Jun;19(6):763-73.
    PMID: 24508818 DOI: 10.1016/j.drudis.2014.01.015
    Regenerative medicine has rapidly evolved over the past decade owing to its potential applications to improve human health. Targeted differentiations of stem cells promise to regenerate a variety of tissues and/or organs despite significant challenges. Recent studies have demonstrated the vital role of the physical microenvironment in regulating stem cell fate and improving differentiation efficiency. In this review, we summarize the main physical cues that are crucial for controlling stem cell differentiation. Recent advances in the technologies for the construction of physical microenvironment and their implications in controlling stem cell fate are also highlighted.
    Matched MeSH terms: Stem Cells/physiology*
  15. Abdul Hamid Z, Lin Lin WH, Abdalla BJ, Bee Yuen O, Latif ES, Mohamed J, et al.
    ScientificWorldJournal, 2014;2014:258192.
    PMID: 25405216 DOI: 10.1155/2014/258192
    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.
    Matched MeSH terms: Hematopoietic Stem Cells/physiology*
  16. Huat TJ, Khan AA, Pati S, Mustafa Z, Abdullah JM, Jaafar H
    BMC Neurosci, 2014;15:91.
    PMID: 25047045 DOI: 10.1186/1471-2202-15-91
    There has been increasing interest recently in the plasticity of mesenchymal stem cells (MSCs) and their potential to differentiate into neural lineages. To unravel the roles and effects of different growth factors in the differentiation of MSCs into neural lineages, we have differentiated MSCs into neural lineages using different combinations of growth factors. Based on previous studies of the roles of insulin-like growth factor 1 (IGF-1) in neural stem cell isolation in the laboratory, we hypothesized that IGF-1 can enhance proliferation and reduce apoptosis in neural progenitor-like cells (NPCs) during differentiation of MSCs into NCPs.We induced MSCs differentiation under four different combinations of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, (C) EGF + bFGF + LIF, (D) EGF + bFGF + BDNF, and (E) without growth factors, as a negative control. The neurospheres formed were characterized by immunofluorescence staining against nestin, and the expression was measured by flow cytometry. Cell proliferation and apoptosis were also studied by MTS and Annexin V assay, respectively, at three different time intervals (24 hr, 3 days, and 5 days). The neurospheres formed in the four groups were then terminally differentiated into neuron and glial cells.
    Matched MeSH terms: Neural Stem Cells/physiology*
  17. Sulong AF, Hassan NH, Hwei NM, Lokanathan Y, Naicker AS, Abdullah S, et al.
    Adv Clin Exp Med, 2014 May-Jun;23(3):353-62.
    PMID: 24979505
    Autologous nerve grafts to bridge nerve gaps pose various drawbacks. Nerve tissue engineering to promote nerve regeneration using artificial neural conduits has emerged as a promising alternative.
    Matched MeSH terms: Neural Stem Cells/physiology*
  18. Srijaya TC, Ramasamy TS, Kasim NH
    J Transl Med, 2014;12:243.
    PMID: 25182194 DOI: 10.1186/s12967-014-0243-9
    The inadequacy of existing therapeutic tools together with the paucity of organ donors have always led medical researchers to innovate the current treatment methods or to discover new ways to cure disease. Emergence of cell-based therapies has provided a new framework through which it has given the human world a new hope. Though relatively a new concept, the pace of advancement clearly reveals the significant role that stem cells will ultimately play in the near future. However, there are numerous uncertainties that are prevailing against the present setting of clinical trials related to stem cells: like the best route of cell administration, appropriate dosage, duration and several other applications. A better knowledge of these factors can substantially improve the effectiveness of disease cure or organ repair using this latest therapeutic tool. From a certain perspective, it could be argued that by considering certain proven clinical concepts and experience from synthetic drug system, we could improve the overall efficacy of cell-based therapies. In the past, studies on synthetic drug therapies and their clinical trials have shown that all the aforementioned factors have critical ascendancy over its therapeutic outcomes. Therefore, based on the knowledge gained from synthetic drug delivery systems, we hypothesize that by employing many of the clinical approaches from synthetic drug therapies to this new regenerative therapeutic tool, the efficacy of stem cell-based therapies can also be improved.
    Matched MeSH terms: Stem Cells/physiology
  19. Mun-Fun H, Ferdaos N, Hamzah SN, Ridzuan N, Hisham NA, Abdullah S, et al.
    Res Vet Sci, 2015 Oct;102:89-99.
    PMID: 26412526 DOI: 10.1016/j.rvsc.2015.07.010
    Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.
    Matched MeSH terms: Stem Cells/physiology*
  20. Lim KL, Teoh HK, Choong PF, Teh HX, Cheong SK, Kamarul T
    Expert Opin Biol Ther, 2016 07;16(7):941-51.
    PMID: 27070264 DOI: 10.1517/14712598.2016.1174211
    INTRODUCTION: Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model.

    AREAS COVERED: Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents.

    EXPERT OPINION: Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

    Matched MeSH terms: Induced Pluripotent Stem Cells/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links