Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Zangooie F, Ganjali M, Keighobadi M, Nabavi R
    Trop Biomed, 2018 Dec 01;35(4):1140-1147.
    PMID: 33601861
    Trypanosomiasis is a disease caused by a flagellate protozoon called Trypanosoma and can be mechanically transmitted by vectors to humans and animals. Various species of Trypanosoma are found in livestock and poultry, which include Trypanosoma evansi, T. brucei, T. vivax and T. congolense. The camel is the most sensitive livestock for T. evansi, so the exact identification of infection is very important for epidemiological studies and the design of control programs. The present study was conducted with the aim of molecular detection of camel trypanosomiasis in the Sistan region in 2015. Previous studies have shown that internal transcribed spacer one (ITS1) of the ribosomal DNA is a reliable genetic marker for carrying out systematic molecular studies of trypanosomes. In order to investigate infections of camels with T. evansi, a total of 113 blood samples were collected randomly and the presence of parasites in each sample was evaluated using the microscopic method and polymerase chain reaction (PCR) test. Genomic DNA was extracted and the ITS-1 was amplified by PCR. In comparison to the nucleotide sequence obtained with the sequences recorded in GenBank, it was determined that there is a 99% homology with the recorded sequence of T. evansi. The obtained sequence was registered in Gen Bank with kx900449 code. The T. evansi sequences from different countries such as India, Taiwan, Thailand, the Philippines, China and Argentina and etc., were extracted from the Gene bank and aligned using the ClustalW2 sequence alignment tool and MEGA software. In this study the prevalence of T. evansi infection using the molecular method was 6.19% and no positive samples were found by microscopic observation.
    Matched MeSH terms: Trypanosoma
  2. Zahari Z, Jani NA, Amanah A, Latif MN, Majid MI, Adenan MI
    Phytomedicine, 2014 Feb 15;21(3):282-5.
    PMID: 24269185 DOI: 10.1016/j.phymed.2013.09.011
    Methanolic extracts of 70 Malaysia plants were screened for their in vitro antitrypanosomal activity using Trypanosome brucei rhodesience, strain STIB 900 and mouse skeletal cell (L-6) in cytotoxicity activity assay. Results indicated that methanol extract from Elephantopus scaber Linn. (E. scaber) possessed the highest value of antitrypanosomal activity with good selectivity index (antitrypanosomal IC50 of 0.22±0.02 μg/ml, SI value of 204.55). Based on these results, E. scaber was chosen for further study by applying bioassay guided fractionation to isolate its antiprotozoal principle. The antiprotozoal principle was isolated from the ethyl acetate partition through solvent fractionation and crystallization process. The isolated active compound 1 was identified as deoxyelephantopin on the basis of its spectral analysis (FTIR, MS, 1D and 2D NMR).
    Matched MeSH terms: Trypanosoma brucei rhodesiense/drug effects*
  3. Weinman D, Wallis RC, Cheong WH, Mahadevan S
    Am J Trop Med Hyg, 1978 Mar;27(2 Pt 1):232-7.
    PMID: 417639
    Systematic surveys of the wild macaques of South Asia by blood culture resulted in the discovery that trypanosomiasis is enzootic in the simians of Indonesia, Malaysia, India, and Thailand. The isolates obtained differ in morphology, metabolism, and ability to multiply in arthropods. Following this discovery, interest focused on possible transmissions of these trypanosomiases. Laboratory-reared and wild-caught insects were studied to determine which are satisfactory intermediate hosts and potential natural vectors. Successful results were obtained with insectary-reared reduviids and Indonesian isolates. In Rhodnius prolixus and Triatoma rubrofasciata the Indonesian trypanosomes multiply for periods which can exceed 40 days. The flagellate infections are in the digestive tract, whereas trypanosomes have never been seen in the salivary glands or in the hemolymph. The feces of trypanosome-carrying reduviids are infective, suggesting a stercoreal method of infection of mammals, and infection was produced in experiments in which feeding by the insects was not possible. The relevance of these findings to natural transmission in Indonesia is not known. Experiments with insects and all other trypanosomal isolates have been negative. The natural transmission mechanism(s) of the simian trypanosomiases in South Asia remains an unsolved problem.
    Matched MeSH terms: Trypanosoma/isolation & purification
  4. Weinman D
    PMID: 5000126
    Matched MeSH terms: Trypanosoma/isolation & purification*
  5. Weinman D
    Trans R Soc Trop Med Hyg, 1972;66(4):628-36.
    PMID: 4627177
    Matched MeSH terms: Trypanosoma/classification; Trypanosoma/cytology; Trypanosoma/growth & development; Trypanosoma/isolation & purification*
  6. Timothy MR, Ibrahim YKE, Muhammad A, Chechet GD, Aimola IA, Mamman M
    Trop Biomed, 2021 Mar 01;38(1):94-101.
    PMID: 33797530 DOI: 10.47665/tb.38.1.016
    Trypanothione reductase is a key enzyme that upholds the redox balance in hemoflagellate protozoan parasites such as T. congolense. This study aims at unraveling the potency of Kolaviron against trypanothione reductase in T. congolense infection using Chrysin as standard. The experiment was performed using three different approaches; in silico, in vitro and in vivo. Kolaviron and Chrysin were docked against trypanothione reductase, revealing binding energies (-9.3 and -9.0 kcal/mol) and Ki of 0.211μM and 0.151μM at the active site of trypanothione reductase as evident from the observed strong hydrophobic/hydrogen bond interactions. Parasitized blood was used for parasite isolation and trypanothione reductase activity assay using standard protocol. Real-time PCR (qPCR) assay was implored to monitor expression of trypanothione reductase using primers targeting the 177-bp repeat satellite DNA in T. congolense with SYBR Green to monitor product accumulation. Kolaviron showed IC50 values of 2.64μg/ml with % inhibition of 66.78 compared with Chrysin with IC50 values of 1.86μg/ml and % inhibition of 53.80. In vivo studies following the administration of these compounds orally after 7 days post inoculation resulted in % inhibition of Chrysin (57.67) and Kolaviron (46.90). Equally, Kolaviron relative to Chrysin down regulated the expression trypanothione reductase gene by 1.352 as compared to 3.530 of the infected group, in clear agreement with the earlier inhibition observed at the fine type level. Overall, the findings may have unraveled the Kolaviron potency against Trypanosoma congolense infection in rats.
    Matched MeSH terms: Trypanosoma congolense/drug effects*; Trypanosoma congolense/enzymology
  7. Theint HT, Walsh JE, Wong ST, Voon K, Shitan M
    Spectrochim Acta A Mol Biomol Spectrosc, 2019 Jul 05;218:348-358.
    PMID: 31026712 DOI: 10.1016/j.saa.2019.04.008
    A laboratory prototype system that correlates murine blood absorbance with degree of infection for Plasmodium berghei and Trypanosoma avensi has been designed, constructed and tested. A population (n = 6) of control uninfected, Plasmodium infected and Trypanosoma infected BALB/c mice were developed and spectral absorption measurements pre and post infection were made every 3 days. A fibre optic spectrometer set-up was used as the basis of a laboratory prototype biosensor that uses the Beer Lambert Law to relate Ultraviolet-Visible-Near-infrared absorbance data to changes in murine blood chemistry post infection. Spectral absorption results indicate a statistically relevant correlation at a 650 nm with infection for Plasmodium from between 4 and 7 sampling days' post infection, in spite of significant standard deviations among the sample populations for control and infected mice. No significant spectral absorption change for Trypanosoma infection was been detected from the current data. Corresponding stained slides of control and infected blood at each sampling date were taken with related infected cell counts determined and these correlate well for Plasmodium absorbance at 650 nm.
    Matched MeSH terms: Trypanosoma/isolation & purification*
  8. Sullivan JS, Sullivan JJ
    PMID: 828978
    Matched MeSH terms: Trypanosoma
  9. Sahimin N, Alias SN, Woh PY, Edah MA, Mohd Zain SN
    Trop Biomed, 2014 Sep;31(3):422-31.
    PMID: 25382468 MyJurnal
    The quantitative buffy coat (QBC) technique and conventional Giemsa thin blood smear was compared to determine the sensitivity and specificity of the technique in detecting blood parasitic infection of the rodent populations from four urban cities in Peninsular Malaysia. A total of 432 blood samples from four rat species (Rattus norvegicus, Rattus rattus diardii, Rattus exulans and Rattus argentiventer) were screened using both techniques and successfully detected two blood protozoan species (Trypanosoma lewisi and Plasmodium sp.) with Trypanosoma lewisi predominantly infecting the population. Results showed that Giemsa-stained thin film (GTF) was the better detection method on blood parasitemia (46.7%) compared to Quantitative Buffy Coat method (38.9%) with overall detection technique sensitivity and specificity at 83.2% and 74.8% respectively. The sensitivity in detection of Trypanosoma lewisi was 84.4% with value slightly lower for Plasmodium sp. infections at 76.6%. Statistical analysis proved that GTF technique was significantly more sensitive in the detection of blood protozoan infections in the rodent population compared to QBC (p<0.05).
    Matched MeSH terms: Trypanosoma lewisi/isolation & purification
  10. Rahman WA, Fong S, Chandrawathani P, Nurulaini R, Zaini CM, Premalaatha B
    Trop Biomed, 2012 Mar;29(1):65-70.
    PMID: 22543604 MyJurnal
    A comparative seroprevalence study on bovine trypanosomiasis and anaplasmosis was conducted. Sera of adult cattle and buffaloes of different breeds from farms from five different states in Malaysia were collected and tested for the presence of Trypanosoma evansi antibodies by CATT and Anaplasma marginale antibodies by c-ELISA. Of the 116 samples, 14.7% tested positive for bovine trypanosomiasis and 77.6% for bovine anaplasmosis.
    Matched MeSH terms: Trypanosoma/immunology
  11. Ola-Fadunsin SD, Gimba FI, Abdullah DA, Abdullah FJF, Sani RA
    Acta Parasitol, 2020 Mar;65(1):165-173.
    PMID: 31797192 DOI: 10.2478/s11686-019-00150-9
    BACKGROUND: Animal trypanosomiasis (Surra) caused by Trypanosoma evansi (T. evansi) is known to be one of the important haemoprotozoan parasites that causes great economical loss on animal production due to mortality and loss of condition.

    METHODS: A cross-sectional study was designed to evaluate the prevalence and risk factors associated with T. evansi infection among cattle in Peninsular Malaysia. Polymerase chain reaction (PCR) was employed on 1045 blood samples collected from 43 farms. A well-structured questionnaire was used to collect data on risk factors associated with T. evansi prevalence. The RoTat 1.2 set of primers was used to amplify products of 205 base pair.

    RESULTS: The overall prevalence was found to be 17.9% (187/1045; 95% CI = 15.66-20.31). Trypanosoma evansi was detected among cattle in all the States of Peninsular Malaysia. Breeds of cattle and closeness to waste area, where the risk factors significantly (p 

    Matched MeSH terms: Trypanosoma/genetics*
  12. Nocht PB
    Matched MeSH terms: Trypanosoma
  13. Nguyen VL, Iatta R, Manoj RRS, Colella V, Bezerra-Santos MA, Mendoza-Roldan JA, et al.
    Acta Trop, 2021 Aug;220:105935.
    PMID: 33930300 DOI: 10.1016/j.actatropica.2021.105935
    Trypanosoma evansi, the causative agent of surra, is a hemoflagellate protozoan mechanically transmitted by hematophagous flies, mainly in tropical and subtropical regions. This protozoan affects several mammalian hosts, including dogs, which are highly susceptible to the infection. To investigate the occurrence of T. evansi in dogs, a total of 672 DNA samples from India (n = 228), Indonesia (n = 57), Malaysia (n = 45), the Philippines (n = 103), Thailand (n = 120), and Vietnam (n = 119) were screened by using species-specific conventional PCR. Of the tested dogs, 10 (1.5%) scored positive to T. evansi. In particular, positive samples were detected in canine blood samples collected from India (n = 4; 1.8%), Indonesia (n = 4; 7%), and Malaysia (n = 2; 4.4%). All tested samples from the Philippines, Thailand and Vietnam were negative. Nucleotide sequence analysis revealed a high variation (i.e. from 0.4% to 6.2%) among the RoTat 1.2 variant surface glycoprotein (vsg) gene. Although the number of sequences included in this analysis is relatively small, this nucleotide variation may indicate the divergence of T. evansi RoTat 1.2 vsg gene among different strains. The high incidence of T. evansi previously reported in cattle and buffaloes in India and Southeast Asia suggests that these animals are the main source of infection to dogs.
    Matched MeSH terms: Trypanosoma/genetics*
  14. Muhd Haffiz J, Norhayati I, Getha K, Nor Azah MA, Mohd Ilham A, Lili Sahira H, et al.
    Trop Biomed, 2013 Mar;30(1):9-14.
    PMID: 23665703 MyJurnal
    Essential oil from Cymbopogon nardus was evaluated for activity against Trypanosoma brucei brucei BS221 (IC50 = 0.31 ± 0.03 μg/mL) and cytotoxic effect on normal kidney (Vero) cells (IC50 = >100 μg/mL). The crude essential oil was subjected to various chromatography techniques afforded active sub fractions with antitrypanosomal activity; F4 (IC50 = 0.61 ± 0.06 μg/mL), F6 (IC50= 0.73 ± 0.33 μg/mL), F7 (IC50 = 1.15 ± 0 μg/mL) and F8 (IC50 = 1.11 ± 0.01 μg/mL). These active fractions did not exhibit any toxic effects against Vero cell lines and the chemical profiles investigation indicated presence of α-and γ-eudesmol, elemol, α-cadinol and eugenol by GC/MS analysis.
    Matched MeSH terms: Trypanosoma brucei brucei/drug effects*
  15. Moideen SV, Houghton PJ, Rock P, Croft SL, Aboagye-Nyame F
    Planta Med, 1999 Aug;65(6):536-40.
    PMID: 10483374
    Dichloromethane extracts of the root bark and stem bark of Kigelia pinnata collected from Zimbabwe exhibited antitrypanosomal activity against Trypanosoma brucei brucei in vitro. Activity-guided fractionation led to the isolation of four naphthoquinones from both the root and stem bark of the plant. The compounds were identified as 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-quinone (1), isopinnatal (2), kigelinol (3), and isokigelinol (4). Subsequently, the compounds were assessed for antitrypanosomal activity against T. brucei brucei and T. brucei rhodesiense bloodstream form trypomastigotes in vitro. Compound 1 with a furanonaphthoquinone structure was found to possess pronounced activity against both parasites with IC50 values of 0.12 and 0.045 microM, respectively, although it was less active than the standard drug pentamidine. Compounds 2, 3, and 4 also exhibited activity against the parasites, although to a lesser extent. The activities of the compounds were further assessed by comparison with the cytotoxic activities obtained against KB cell lines.
    Matched MeSH terms: Trypanosoma brucei brucei/drug effects*; Trypanosoma brucei brucei/isolation & purification; Trypanosoma brucei rhodesiense/drug effects*
  16. Mohd Rajdi NZI, Mohamad MA, Tan LP, Choong SS, Reduan MFH, Hamdan RH, et al.
    Vet Med Sci, 2021 Mar;7(2):303-309.
    PMID: 33161648 DOI: 10.1002/vms3.379
    This is the first case report for the positive Trypanosoma evansi incident in Kelantan, Malaysia confirmed through protozoa detection in a Siam B mare. The horse was presented with complaints of lethargy and inappetence and it collapsed on the day of visit. Normal saline and dextrose solution were administered intravenously, while multivitamins and nerve supplements were given intramuscularly to stabilise the horse before further treatment. Haematological findings showed normocytic hypochromic anaemia and are suggestive of regenerative anaemia. Thin blood smear and examination revealed the presence of Trypanosoma sp., and it was confirmed as T. evansi through molecular identification. The horse was found dead 2 days after and post-mortem was conducted. Histopathology revealed that the horse had developed a neurological form of the disease, besides the detection of the protozoa in heart, spleen and kidney tissue. This first positive Surra case in Kelantan, Malaysia, that is bordering Thailand confirms the increasing concern of transboundary infections. In conclusion, Surra is a potential emerging disease and should be considered as differential diagnosis in horses with pale mucous membrane. This condition is particularly imperative in horses found in these regions as Surra is endemic.
    Matched MeSH terms: Trypanosoma
  17. Mazlan NW, Clements C, Edrada-Ebel R
    Mar Drugs, 2020 Dec 21;18(12).
    PMID: 33371387 DOI: 10.3390/md18120661
    The discovery of new secondary metabolites from natural origins has become more challenging in natural products research. Different approaches have been applied to target the isolation of new bioactive metabolites from plant extracts. In this study, bioactive natural products were isolated from the crude organic extract of the mangrove plant Avicennia lanata collected from the east coast of Peninsular Malaysia in the Setiu Wetlands, Terengganu, using HRESI-LCMS-based metabolomics-guided isolation and fractionation. Isolation work on the crude extract A. lanata used high-throughput chromatographic techniques to give two new naphthofuranquinone derivatives, hydroxyavicenol C (1) and glycosemiquinone (2), along with the known compounds avicenol C (3), avicequinone C (4), glycoquinone (5), taraxerone (6), taraxerol (7), β-sitosterol (8) and stigmasterol (9). The elucidation and identification of the targeted bioactive compounds used 1D and 2D-NMR and mass spectrometry. Except for 6-9, all isolated naphthoquinone compounds (1-5) from the mangrove plant A. lanata showed significant anti-trypanosomal activity on Trypanosoma brucei brucei with MIC values of 3.12-12.5 μM. Preliminary cytotoxicity screening against normal prostate cells (PNT2A) was also performed. All compounds exhibited low cytotoxicity, with compounds 3 and 4 showing moderate cytotoxicity of 78.3% and 68.6% of the control values at 100 μg/mL, respectively.
    Matched MeSH terms: Trypanosoma brucei brucei/drug effects*; Trypanosoma brucei brucei/physiology
  18. Lim KT, Zahari Z, Amanah A, Zainuddin Z, Adenan MI
    Exp Parasitol, 2016 Mar;162:49-56.
    PMID: 26772786 DOI: 10.1016/j.exppara.2016.01.002
    To accelerate the discovery of novel leads for the treatment of Human African Trypanosomiasis (HAT), it is necessary to have a simple, robust and cost-effective assay to identify positive hits by high throughput whole cell screening. Most of the fluorescence assay was made in black plate however in this study the HTS assay developed in 384-well format using clear plate and black plate, for comparison. The HTS assay developed is simple, sensitive, reliable and reproducible in both types of plates. Assay robustness and reproducibility were determined under the optimized conditions in 384-well plate was well tolerated in the HTS assay, including percentage of coefficient of variation (% CV) of 4.68% and 4.74% in clear and black 384-well plate, signal-to-background ratio (S/B) of 12.75 in clear 384-well plate and 12.07 in black 384-well plate, Z' factor of 0.79 and 0.82 in clear 384-well plate and black 384-well plate, respectively and final concentration of 0.30% dimethylsulfoxide (DMSO) in both types of plate. Drug sensitivity was found to be comparable to the reported anti-trypanosomal assay in 96-well format. The reproducibility and sensitivity of this assay make it compliant to automated liquid handler use in HTS applications.
    Matched MeSH terms: Trypanosoma
  19. Lim KT, Amanah A, Chear NJ, Zahari Z, Zainuddin Z, Adenan MI
    Exp Parasitol, 2018 Jan;184:57-66.
    PMID: 29175017 DOI: 10.1016/j.exppara.2017.11.007
    In our ongoing work searching for new trypanocidal lead compounds from Malaysian plants, two known piperidine alkaloids (+)-spectaline (1) and iso-6-spectaline (2) were isolated from the leaves of Senna spectabilis (sin. Cassia spectabilis). Analysis of the 1H and 13C NMR spectra showed that 1 and 2 presented analytical and spectroscopic data in full agreement with those published in the literature. All compounds were screened in vitro against Trypanosoma brucei rhodesiense in comparison to the standard drug pentamidine. Compound 1 and 2 inhibited growth of T. b. rhodesiense with an IC50 value of 0.41 ± 0.01 μM and 0.71 ± 0.01 μM, without toxic effect on L6 cells with associated a selectivity index of 134.92 and 123.74, respectively. These data show that piperidine alkaloids constitute a class of natural products that feature a broad spectrum of biological activities, and are potential templates for the development of new trypanocidal drugs. To our knowledge, the compounds are being reported for the first time to have inhibitory effects on T. b. rhodesiense. The ultrastructural alterations in the trypanosome induced by 1 and 2, leading to programmed cell death were characterized using electron microscopy. These alterations include wrinkling of the trypanosome surface, formation of autophagic vacuoles, disorganization of kinetoplast, and swelling of the mitochondria. These findings evidence a possible autophagic cell death.
    Matched MeSH terms: Trypanosoma brucei rhodesiense/drug effects*; Trypanosoma brucei rhodesiense/growth & development; Trypanosoma brucei rhodesiense/ultrastructure
  20. Kuntz RE, Myers BJ, McMurray TS
    Trans Am Microsc Soc, 1970 Apr;89(2):304-7.
    PMID: 5470359
    Matched MeSH terms: Trypanosoma/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links