Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Shamel MM, Sulaiman NM, Sulaiman MZ
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):447-53.
    PMID: 10595447
    A study was conducted to evaluate the cross flow tubular ultrafiltration behavior of aqueous solutions of pectin. The effectiveness of pulsatile flow as a cleaning-in-place (CIP) technique to improve permeate flux was undertaken on the above mentioned solution. This investigation is part of a study to apply membrane filtration in the clarification of tropical fruit juice. The main variables, which were investigated, include the concentration of pectin, pulse frequency and amplitude. It was found that the amount of pectin in the solution significantly affects its ultrafiltration behavior. From the observed profiles, it is evident that the formation of gel layer on the membrane surface is responsible for the leveling of flux at high pressures. The presence of pectin was found to affect the properties of the solution such as viscosity, pH and the size of pectin colloid. Improvements in the permeate flux for pectin solution were obtained by employing pulsatile flow cleaning-in-place technique. Both pulse frequency and amplitude are important parameters that can improve the improvement of in-situ cleaning method. Similar to several findings reported in the literature, pulsatile flow showed significant effectiveness of about 60% higher flux when the ultrafiltration process is operated under laminar condition.
    Matched MeSH terms: Ultrafiltration/methods*
  2. Ong KK, Fakhru'l-Razi A, Baharin BS, Hassan MA
    PMID: 10595436
    The application of membrane separation in palm oil refining process has potential for energy and cost savings. The conventional refining of crude palm oil results in loss of oil and a contaminated effluent. Degumming of crude palm oil by membrane technology is conducted in this study. The objective of this research is to study the feasibility of membrane filtration for the removal of phospholipids in the degumming of crude palm oil, including analyses of phosphorus content, carotene content free fatty acids (as palmitic acid), colour and volatile matter. A PCI membrane module was used which was equipped with polyethersulfone membranes having a molecular weight cut off of 9,000 (type ES209). In this study, phosphorus content was the most important parameter monitored. The membrane effectively removed phospholipids resulting in a permeate with a phosphorus content of less than 0.3 ppm The percentage removal of phosphorus was 96.4% and was considered as a good removal. Lovibond colour was reduced from 27R 50Y to 20R 30Y. The percentage removal of carotene was 15.8%. The removal of colour was considered good but the removal of carotene was considered insignificant by the membrane. Free fatty acids and volatile matter were not removed. Typical of membrane operations, the permeate flux decreased with time and must be improved in order to be adopted on an industrial scale. Membrane technology was found to have good potential in crude palm oil degumming. However, an appropriate method has to be developed to clean the membranes for reuse.
    Matched MeSH terms: Ultrafiltration/methods*
  3. Shamel MM, Azaha RB, Al-Zuhair S
    PMID: 16317961
    The amount of lipase from Mucor miehei adsorption on ultrafiltration polysulfone hollow fiber membrane chips has been determined using different lipase concentrations at three different temperatures, namely 30, 35, and 40 degrees C. It was experimentally shown that adsorption of lipase increases with temperature. The results were used to evaluate the constants found in the Langmuir adsorption isotherm model coupled with the Van't Hoff's relationship. A temperature dependence correlation for the amount of adsorbed lipase activity, alip,ads, and that present in the supernatant solution, alip,free was determined. The effect of varying the concentration on a cross-linking agent, namely, glutaraldehyde, to the membrane chips was also tested. It was found that, under the same operating conditions, the amount of lipase adsorbed on polysulfone membranes was increased dramatically after pre-treating the membrane with 1% Glutaraldehyde. However, increasing the concentration of the cross-linking agent has a low effect on the amount of lipase adsorbed.
    Matched MeSH terms: Ultrafiltration/instrumentation
  4. Aroua MK, Zuki FM, Sulaiman NM
    J Hazard Mater, 2007 Aug 25;147(3):752-8.
    PMID: 17339078
    This study deals with the removal of chromium species from aqueous dilute solutions using polymer-enhanced ultrafiltration (PEUF) process. Three water soluble polymers, namely chitosan, polyethyleneimine (PEI) and pectin were selected for this study. The ultrafiltration studies were carried out using a laboratory scale ultrafiltration system equipped with 500,000 MWCO polysulfone hollow fiber membrane. The effects of pH and polymer composition on rejection coefficient and permeate flux at constant pressure have been investigated. For Cr(III), high rejections approaching 100% were obtained at pH higher than 7 for the three tested polymers. With chitosan and pectin, Cr(VI) retention showed a slight increase with solution pH and did not exceed a value of 50%. An interesting result was obtained with PEI. The retention of Cr(VI) approached 100% at low pH and decreased when the pH was increased. This behavior is opposite to what one can expect in the polymer-enhanced ultrafiltration of heavy metals. Furthermore, the concentration of polymer was found to have little effect on rejection. Permeate flux remained almost constant around 25% of pure water flux.
    Matched MeSH terms: Ultrafiltration/instrumentation; Ultrafiltration/methods*
  5. Idris A, Ahmed I, Jye HW
    Water Sci Technol, 2007;56(8):169-77.
    PMID: 17978445
    The objective of this research is to investigate the performance of blend cellulose acetate (CA)-polyethersulphone (PES) membranes prepared using microwave heating (MWH) techniques and then compare it with blend CA-PES membranes prepared using conventional heating (CH) methods using bovine serum albumin solution. The superior membranes were then used in the treatment of palm oil mill effluent (POME). Various blends of CA-PES have been blended with PES in the range of 1-5 wt%. This distinctive series of dope formulations of blend CA/PES and pure CA was prepared using N, N-dimethylformamide (DMF) as solvent. The dope solution was prepared by MW heating for 5 min at a high pulse and the membranes were prepared by phase inversion method. The performances of these membranes were evaluated in terms of pure water and permeate flux, percentage removal of total suspended solids (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). The results indicate that blend membranes prepared using the microwave technique is far more superior compared to that prepared using CH. Blend membranes with 19% CA, 1-3% PES and 80% of DMF solvent were found to be the best membrane formulation.
    Matched MeSH terms: Ultrafiltration
  6. Leong YK, Xui OC, Chia OK
    J Food Prot, 2008 May;71(5):1035-7.
    PMID: 18522042
    Survival of rotavirus in fresh fruit juices of papaya (Caraca papaya L.), honeydew melon (Cucumis melo L.), and pineapple (Ananas comosus [L.] Merr.) was studied. Clarified juices were prepared from pulps of ripe fruits and sterilized by ultrafiltration. One milliliter of juice from each fruit was inoculated with 20 microl of 1 x 10(6) PFU of SA11 rotavirus and sampled immediately (0-h exposure) and 1 and 3 h later at 28 degrees C. Mean viral titers in juices of papaya (pH 5.1) and honeydew melon (pH 6.3) at 1 and 3 h were not significantly different from titers at 0-h exposure. Mean viral titers in juices from pineapples with ripening color indices of 3 (pH 3.6) and 6 (pH 3.7) at 1-h exposure (color index 3: 4.0 +/- 1.7 x 10(4); color index 6: 2.3 +/- 0.3 x 10(5)) and 3-h exposure (color index 3: 1.1 +/- 0.4 x 10(4); color index 6:1.3 +/- 0.6 x 10(5)) were significantly lower than titers at 0-h exposure (color index 3: 5.7 +/- 2.9 x 10(5); color index 6: 7.4 +/- 1.3 x 10(5)). Virus titers in pineapple juices of color index 3 were significantly lower than titers of the virus in juices of index 6. In cell culture medium (pH 7.4), SA11 titer remained stable over 3 h at 28 degrees C. However, at pH 3.6, the virus titer was reduced to a level not significantly different from that of the virus in pineapple juice of color index 6 (pH 3.7). In conclusion, papaya and honeydew melon juices, in contrast to pineapple juice, have the potential to transmit rotavirus. Inactivation of SA11 virus in pineapple juice can be possibly attributed to low pH and constituent(s) in the juice.
    Matched MeSH terms: Ultrafiltration
  7. Ahmad AL, Tan LS, Abd Shukor SR
    J Hazard Mater, 2008 Jun 15;154(1-3):633-8.
    PMID: 18055106
    This study examined the performance of nanofiltration membranes to retain atrazine and dimethoate in aqueous solution under different pH conditions. Four nanofiltration membranes, NF90, NF200, NF270 and DK are selected to be examined. The operating pressure, feed pesticide and stirring rate were kept constant at 6x10(5) Pa, 10 mg/L and 1000 rpm. It was found that increasing the solution's pH increased atrazine and dimethoate rejection but reduced the permeate flux performance for NF200, NF270 and DK. However, NF90 showed somewhat consistent performance in both rejection and permeate flux regardless of the solution's pH. NF90 maintained above 90% of atrazine rejection and approximately 80% of dimethoate rejection regardless of the changes in solution's pH. Thus, NF90 is deemed the more suitable nanofiltration membrane for atrazine and dimethoate retention from aqueous solution compared to NF200, NF270 and DK.
    Matched MeSH terms: Ultrafiltration/instrumentation
  8. Zhang Y, Yan L, Qiao X, Chi L, Niu X, Mei Z, et al.
    J Environ Sci (China), 2008;20(5):558-64.
    PMID: 18575108
    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.
    Matched MeSH terms: Ultrafiltration
  9. Tan IA, Ahmad AL, Hameed BH
    Bioresour Technol, 2009 Feb;100(3):1494-6.
    PMID: 18809316 DOI: 10.1016/j.biortech.2008.08.017
    This study investigated the adsorption potential of oil palm shell-based activated carbon to remove 2,4,6-trichlorophenol from aqueous solution using fixed-bed adsorption column. The effects of 2,4,6-trichlorophenol inlet concentration, feed flow rate and activated carbon bed height on the breakthrough characteristics of the adsorption system were determined. The regeneration efficiency of the oil palm shell-based activated carbon was evaluated using ethanol desorption technique. Through ethanol desorption, 96.25% of the adsorption sites could be recovered from the regenerated activated carbon.
    Matched MeSH terms: Ultrafiltration/methods*
  10. Ahmad AL, Chong MF, Bhatia S
    J Hazard Mater, 2009 Nov 15;171(1-3):166-74.
    PMID: 19573986 DOI: 10.1016/j.jhazmat.2009.05.114
    The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost.
    Matched MeSH terms: Ultrafiltration
  11. Ibrahim MZ, Norashikin MZ
    J Nanosci Nanotechnol, 2010 Sep;10(9):6211-5.
    PMID: 21133176
    This paper reports the performance of two different artificial neural networks (ANN), Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) compared to conventional software for prediction of the pore size of the asymmetric polyethersulfone (PES) ultrafiltration membranes. ANN has advantages such as incredible approximation, generalization and good learning ability. The MLP are well suited for multiple inputs and multiple outputs while RBF are powerful techniques for interpolation in multidimensional space. Three experimental data sets were used to train the ANN using polyethylene glycol (PEG) of different molecular weights as additives namely as PEG 200, PEG 400 and PEG 600. The values of the pore size can be determined manually from the graph and solve it using mathematical equation. However, the mathematical solution used to determine the pore size and pore size distribution involve complicated equations and tedious. Thus, in this study, MLP and RBF are applied as an alternative method to estimate the pore size of polyethersulfone (PES) ultrafiltration membranes. The raw data needed for the training are solute separation and solute diameter. Values of solute separation were obtained from the ultrafiltration experiments and solute diameters ware calculated using mathematical equation. With the development of this ANN model, the process to estimate membrane pore size could be made easier and faster compared to mathematical solutions.
    Matched MeSH terms: Ultrafiltration
  12. Mousavi S, Ibrahim S, Aroua MK
    Bioresour Technol, 2012 Dec;125:256-66.
    PMID: 23026342 DOI: 10.1016/j.biortech.2012.08.075
    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h.
    Matched MeSH terms: Ultrafiltration/instrumentation*
  13. Ali N, El-Harbawi M, Jabal AA, Yin CY
    Environ Technol, 2012 Feb-Mar;33(4-6):481-6.
    PMID: 22629620
    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents.
    Matched MeSH terms: Ultrafiltration/methods*
  14. Mohd Hafez Mohd Isa, Frazier AR, Jauregi P
    Sains Malaysiana, 2012;41:1117-1124.
    Biosurfactants are microbially produced surface active agents that offer better biodegradability and lower toxicity than chemically synthesized surfactants because of their biogenetic origin. One of the most surface-active biosurfactants known is surfactin, a cyclic lipopeptide produced by various strains of Bacillus subtilis. In this study, the cleaning potential of surfactin on ultrafiltration (UF) membranes fouled with BSA was studied using centrifugal UF devices of 50 kDa and 100 kDa MWCO polyethersulfone (PES) membranes. Mechanisms of bovine serum albumin (BSA) displacement by surfactin on fouled UF membranes were studied using dynamic light scattering (DLS) technique and surface tension measurements. Hydrodynamic diameter and surface tension measurements of BSA-surfactin mixtures showed that the surfactin was efficient in displacing BSA fouled on UF membranes due to strong electrostatic repulsive interactions involved at pH8.5. This study demonstrated that surfactin can be used to effectively clean fouled UF membranes.
    Matched MeSH terms: Ultrafiltration
  15. Sajab MS, Chia CH, Zakaria S, Khiew PS
    Bioresour Technol, 2013 Jan;128:571-7.
    PMID: 23211482 DOI: 10.1016/j.biortech.2012.11.010
    Oil palm empty fruit bunch (EFB) fibers were employed to remove dyes from aqueous solutions via adsorption approaches. The EFB fibers were modified using citric acid (CA) and polyethylenimine (PEI) to produce anionic and cationic adsorbents, respectively. The CA modified EFB fibers (CA-EFB) and PEI-modified EFB fibers (PEI-EFB) were used to study the efficiency in removing cationic methylene blue (MB) and anionic phenol red (PR) from aqueous solutions, respectively, at different pHs, temperatures and initial dye concentrations. The adsorption data for MB on the CA-EFB fitted the Langmuir isotherm, while the adsorption of PR on the PEI-EFB fitted the Freundlich isotherm, suggesting a monolayer and heterogeneous adsorption behavior of the adsorption processes, respectively. Both modified fibers can be regenerated up to seven adsorption/desorption cycles while still providing as least 70% of the initial adsorption capacity.
    Matched MeSH terms: Ultrafiltration/methods*
  16. Lim JW, Lim PE, Seng CE, Adnan R
    Bioresour Technol, 2013 Feb;129:485-94.
    PMID: 23266850 DOI: 10.1016/j.biortech.2012.11.111
    Moving bed sequencing batch reactors (MBSBRs) packed with 8% (v/v) of 8-, 27- and 64-mL polyurethane (PU) foam cubes, respectively, were investigated for simultaneous 4-chlorophenol (4-CP) and nitrogen removal at increasing 4-CP concentration. When the 4-CP concentration exceeded 300 mg L(-1), the MBSBR with 27-mL foam cubes was observed to outperform the other MBSBRs in removing 4-CP and nitrogen. The reasons were: (1) there were more biomass in inner layer of the 27-mL cubes, compared to that of the 8-mL cubes, which was more shielded from the inhibitory effect of 4-CP and (2) the 27-mL cubes were more mobile than the 64-mL cubes. Although increasing 4-CP concentration to 600 mg L(-1) resulted in incomplete removal of 4-CP in the MBSBRs, results of the batch reactor with 27-mL foam cubes showed that complete 4-CP removal within the REACT period could be achieved by increasing the packing volume to 20%.
    Matched MeSH terms: Ultrafiltration/instrumentation
  17. Junaidi MU, Leo CP, Kamal SN, Ahmad AL
    Water Sci Technol, 2013;67(9):2102-9.
    PMID: 23656955 DOI: 10.2166/wst.2013.098
    Although ultrafiltration (UF) membranes are applicable in wastewater and water treatment, most UF membranes are hydrophobic and susceptible to severe fouling by natural organic matter. In this work, polysulfone (PSf) membrane was blended with silicaluminophosphate (SAPO) nanoparticles, SAPO-34, to study the effect of SAPO-34 incorporation in humic acid (HA) fouling mitigation. The casting solution was prepared by blending 5-20 wt% of SAPO-34 nanoparticles into the mixture of PSf, 1-methyl-2-pyrrolidinone and polyvinyl alcohol at 75 °C. All membrane samples were then prepared using the phase inversion method. Blending SAPO-34 zeolite into PSf membranes caused augmentation in surface hydrophilicity and pore size, leading to higher water permeation. In the HA filtration test, mixed matrix membranes (MMMs) with SAPO-34 zeolite showed reduced HA fouling initiated from pore blocking. The MMM with 20 wt% SAPO-34 loading exhibited the highest increment of water permeation (83%) and maintained about 75% of permeate flux after 2.5 h. However, the SAPO-34 fillers agglomerated in the PSf matrix and induced macrovoid formation on the membrane surface when excessive zeolite was added.
    Matched MeSH terms: Ultrafiltration/methods*
  18. Zahrim AY, Hilal N, Tizaoui C
    Water Sci Technol, 2013;67(4):901-6.
    PMID: 23306271 DOI: 10.2166/wst.2012.638
    Tubular nanofiltration membrane performance to treat water for reuse was carried out by choosing C.I. Acid Black 210 dye as a model dye. It has been shown that increasing pH causes reduction in irreversible fouling factor (IFF) and the dye removal is also affected by solution pH. The total organic carbon removal for pH 4, pH 7, pH 8 and pH 10 is 97.9, 92.3, 94.5 and 94.6%, respectively. The conductivity removal for pH 4, pH 7, pH 8 and pH 10 is 85.1, 88.3, 87.8 and 90.7% respectively. The increase in the initial dye concentration causes rapid increase in fouling until 100 mg/l. Then the fouling increases gradually as it reaches a maximum IFF around 13%. This study also shows that the colour of permeate changes from colourless to light greenish/yellowish (initial concentration of 2,000 and 4,000 mg/l) as the initial dye concentration increases. The conductivity removal was also reduced as the initial dye concentration increased due to screening of the Donnan effect with the presence of salt.
    Matched MeSH terms: Ultrafiltration
  19. Nazwa Jon, Ibrahim Abdullah, Rizafizah Othaman
    Sains Malaysiana, 2013;42:469-473.
    The presence of pores plays an important role for many membrane processes especially in ultrafiltration and microfiltration. Epoxidised natural rubber (ENR)/polyvinyl chloride (PVC) membranes filled with two types of silica fillers were prepared via simultaneous solvent exchange and evaporation of solvent technique. Two types of silica, i.e. microsilica (microcrystalline
    silica powder) and nanosilica (generated from tetraethoxysilane (TEOS)) were used. The chemical composition, morphology and mechanical stability of the membranes were studied. Both types of silica showed good interaction with the membrane matrix. The formation of pores depended on the size of silica particles added. Microsilica produced large pores while insitu generated nanosilica produced nanosized pores. The mechanical properties of membrane improved with the addition
    of silica. The tensile strength increased from 10.6 MPa to 17.8 MPa and 14.5 MPa for nanosilica and microsilica filled membrane while the tensile modulus increased from 1.6 MPa to 3.8 MPa and 3.4 MPa, respectively. Thus, both types of silica acted as a filler as well as pore forming agent for the ENR/PVC membrane.
    Matched MeSH terms: Ultrafiltration
  20. Mohd Amin MF, Heijman SG, Lopes SI, Rietveld LC
    ScientificWorldJournal, 2014;2014:162157.
    PMID: 25197693 DOI: 10.1155/2014/162157
    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles' classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism.
    Matched MeSH terms: Ultrafiltration
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links