Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. THOMSON DL, RUIZ E, BAANDKAR M
    Trans R Soc Trop Med Hyg, 1964 Sep;58:425-31.
    PMID: 14206699
    Matched MeSH terms: Umbilical Cord*
  2. Sivalingam N, Surinder S
    Med J Malaysia, 2001 Dec;56(4):451-9.
    PMID: 12014765
    Intra-umbilical injection of oxytocin has been used to hasten placental separation in retained placenta. A randomised controlled trial was done on 35 consequent women who fulfilled the criteria for retained placenta at the Department of Obstetrics & Gynaecology Ipoh Hospital. Nineteen patients who were recruited into the study group received intraumbilical injection of 301U oxytocin in 27mls saline. Another 16 patients who were in the control group received 30mls of 0.9% sodium chloride (placebo). The primary outcome measured was the need for manual removal of placenta (MRP). Nine out of the 19 patients in the oxytocin group required MRP while 10/16 in the control group required MRP. There was a 24% reduction (95% C.I. 0.41 to 1.39) in the need for MRP in the study group compared to the saline group. our results indicate that intra-umbilical vein injection of oxytocin is not clinically useful for the removal of a retained placenta.
    Matched MeSH terms: Umbilical Cord*
  3. Rachagan SP, Zawiah S, Menon A
    Med J Malaysia, 1996 Dec;51(4):480-1.
    PMID: 10968038
    Extra pelvic endometriosis is rare and its presentation is varied. A case of pulmonary and umbilical endometriosis which presented as catamenial pneumothorax is presented. Due to poor response to medical treatment, a total abdominal hysterectomy and bilateral salpingo-oophorectomy was done to relieve the patient of her recurrent symptoms.
    Matched MeSH terms: Umbilical Cord*
  4. Raman S, Kuppuvelumani P, Menaka H
    Med J Malaysia, 1991 Mar;46(1):110-3.
    PMID: 1836033
    The relevant investigations and management of a case of alpha-thalassaemia major suspected antenatally is discussed. The value of ultrasonically guided cordocentesis in the definite diagnosis of this condition is emphasised in the management of this pregnancy. We believe that this is the first time such a procedure has been done in this country.
    Matched MeSH terms: Umbilical Cord/ultrasonography
  5. Sen DK
    Med J Malaysia, 1977 Sep;32(1):96-9.
    PMID: 609354
    Matched MeSH terms: Umbilical Cord/pathology
  6. Sinnathuray TA
    Med J Malaysia, 1973 Sep;28(1):35-9.
    PMID: 4273781
    Matched MeSH terms: Umbilical Cord*
  7. SINNATHURAY TA
    Med J Malaysia, 1964 Mar;18:205-11.
    PMID: 14157187
    Matched MeSH terms: Umbilical Cord*
  8. LLEWELLYN-JONES D
    Med J Malaya, 1958 Sep;13(1):70-3.
    PMID: 13589373
    Matched MeSH terms: Umbilical Cord*
  9. Chew MX, Teoh PY, Wong YP, Tan GC
    Malays J Pathol, 2019 Dec;41(3):365-368.
    PMID: 31901924
    INTRODUCTION: Umbilical cord abnormalities include short cord, long cord, knots, hyper-coiling, hypo-coiling, stricture, single umbilical artery, supernumerary umbilical vessels, cystic and vascular malformation, and abnormal insertion of cord like velamentous and furcate insertions. We report a case of intrauterine death in a fetus with multiple umbilical cord strictures and vascular thrombosis.

    CASE REPORT: A 35-year-old woman delivered a stillborn female fetus at 33 weeks of gestation. No fetal anomaly was detected. Examination of the umbilical cord showed multiple strictures, located 4.5 cm and 20 cm from the placental insertion site. Microscopically, the stricture site showed Wharton's jelly being replaced by fibrosis with presence of vascular thrombosis.

    DISCUSSION: Umbilical cord stricture is uncommon and has been described to be associated with intrauterine fetal death and a possibility of recurrent. There is a need to counsel the parents and close fetal surveillance in subsequent pregnancy is advise since the risk of recurrent remains uncertain.

    Matched MeSH terms: Umbilical Cord/pathology*
  10. Ngadiono E, Hardiany NS
    Malays J Med Sci, 2019 Jul;26(4):5-16.
    PMID: 31496889 DOI: 10.21315/mjms2019.26.4.2
    A glioma, especially a grade IV glioblastoma, is a malignant tumour with a poor prognosis despite growing medical advancements. Researchers have been looking for better and more effective treatments targeting the molecular pathways of gliomas due to glioblastomas' ability to develop resistance to chemotherapies. Moreover, glioma stem cells (GSC) contribute to maintaining the glioma population, which benefits from its ability to self-renew and differentiate. Recent research has reported that through the introduction of umbilical cord mesenchymal stem cells (UCMSC) into glioma cells, the growth and development of the glioma cells can be downregulated. It has more currently been found out that UCMSC release extracellular vesicles (EVs) containing miRNA that are responsible for this phenomenon. Therefore, this review analyses literature to discuss all possible miRNAs contained within the UCMSC's EVs and to elaborate on their molecular mechanisms in halting gliomas and GSC growth. This review will also include the challenges and limitations, to account for which more in vivo research is suggested. In conclusion, this review highlights how miRNAs contained within UCMSC's EVs are able to downregulate multiple prominent pathways in the survival of gliomas.
    Matched MeSH terms: Umbilical Cord
  11. Hardiany NS, Yo EC, Ngadiono E, Wanandi SI
    Malays J Med Sci, 2019 Nov;26(6):35-45.
    PMID: 31908585 DOI: 10.21315/mjms2019.26.6.4
    Background: Glioblastoma multiforme (GBM) is the most malignant primary brain tumour and there is no definite cure. It has been suggested that there are significant interactions among mesenchymal stem cells (MSCs), their released factors and tumour cells that ultimately determine GBM's growth pattern. This study aims to analyse the expression of molecules involved in GBM cell apoptotic pathways following treatment with the MSC secretome.

    Methods: A conditioned medium of umbilical cord-derived MSCs (UCMSC-CM) was generated by culturing the cells on serum-free αMEM for 24 h. Following this, human GBM T98G cells were treated with UCMSC-CM for 24 h. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was then performed to measure the mRNA expression of survivin, caspase-9, TNF-related apoptosis-inducing ligand (TRAIL), DR4 and DcR1.

    Results: mRNA expression of caspase-9 in CM-treated T98G cells increased 1.6-fold (P = 0.017), whereas mRNA expression of survivin increased 3.5-fold (P = 0.002). On the other hand, TRAIL protein expression was upregulated (1.2-fold), whereas mRNA expression was downregulated (0.4-fold), in CM-treated cells. Moreover, there was an increase in the mRNA expression of both DR4 (3.5-fold) and DcR1 (1,368.5-fold) in CM-treated cells.

    Conclusion: The UCMSC-CM was able to regulate the expression of molecules involved in GBM cell apoptotic pathways. However, the expression of anti-apoptotic molecules was more upregulated than that of pro-apoptotic molecules.

    Matched MeSH terms: Umbilical Cord
  12. Aksu F, Topacoglu H, Arman C, Atac A, Tetik S, Hasanovic A, et al.
    Surg Radiol Anat, 2009 Sep;31 Suppl 1:95-229.
    PMID: 27392492 DOI: 10.1007/BF03371486
    Conference abstracts: Malaysia in affiliation
    (1). PO-211. AGE-SPECIFIC STRESS-MODULATED
    CHANGES OF SPLENIC IMMUNOARCHITECTURE
    IN THE GROWING BODY. Marina Yurievna Kapitonova, Syed Baharom Syed Ahmad Fuad, Flossie Jayakaran; Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, Malaysia
    syedbaharom@salam.uitm.edu.my
    (2). PO-213. A DETAILED OSTEOLOGICAL STUDY OF THE ANOMALOUS GROOVES NEAR THE
    MASTOID NOTCH OF THE SKULL. ISrijit Das, 2Normadiah Kassim, lAzian Latiff, IFarihah Suhaimi, INorzana Ghafar, lKhin Pa Pa Hlaing, lIsraa Maatoq, IFaizah Othman; I Department of Anatomy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 2 Department of Anatomy, Universiti Malaya, Kuala Lumpur, Malaysia. das_sri jit23@rediffmail.com
    (3). PO-21S. FIRST LUMBRICAL MUSCLE OF THE
    PALM: A DETAILED ANATOMICAL STUDY WITH
    CLINICAL IMPLICATIONS. Srijit Das, Azian Latiff, Parihah Suhaimi, Norzana Ghafar, Khin Pa Pa Hlaing, Israa Maatoq, Paizah Othman; Department of Anatomy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. das_srijit23@rediffmail.com
    (4). PO-336. IMPROVEMENT IN EXPERIMENTALLY
    INDUCED INFRACTED CARDIAC FUNCTION
    FOLLOWING TRANSPLANTATION OF HUMAN
    UMBILICAL CORD MATRIX-DERIVED
    MESENCHYMAL CELLS. lSeyed Noureddin Nematollahi-Mahani, lMastafa Latifpour, 2Masood Deilami, 3Behzad Soroure-Azimzadeh, lSeyed
    Hasan Eftekharvaghefi, 4Fatemeh Nabipour, 5Hamid
    Najafipour, 6Nouzar Nakhaee, 7Mohammad Yaghoobi, 8Rana Eftekharvaghefi, 9Parvin Salehinejad, IOHasan Azizi; 1 Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran; 2 Department of Cardiosurgery, Hazrat-e Zahra Hospital, Kerman, Iran; 3 Department of Cardiology, Kerman University of Medical Sciences, Kerman, Iran; 4 Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran; 5 Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran; 6 Department of Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran; 7 Department
    of Biotechnology, Research Institute of Environmental Science, International Center for Science, High Technology & Environmental Science, Kerman, Iran; 8 Students Research Center, Kerman University of Medical Sciences, Kerman, Iran; 9 Institute of Bioscience, University Putra Malaysia,
    Kuala Lumpur, Malaysia; 10 Department of Stem Cell, Cell Science Research Center, Royan Institute, ACECR, Tehran, Iran. nnematollahi@kmu.ac.ir
    (5).
    Matched MeSH terms: Umbilical Cord
  13. Chin SP, Mohd-Shahrizal MY, Liyana MZ, Then KY, Cheong SK
    Stem Cells Int, 2020;2020:8877003.
    PMID: 33061992 DOI: 10.1155/2020/8877003
    Background: Mesenchymal stem cells (MSCs) express growth factors and other cytokines that stimulate repair and control the immune response. MSCs are also immunoprivileged with low risk of rejection. Umbilical cord-derived MSCs (UCMSCs) are particularly attractive as an off-the-shelf allogeneic treatment in emergency medical conditions. We aim to determine the safety and efficacy of intravenous allogeneic infusion of UCMSCs (CLV-100) by Cytopeutics® (Selangor, Malaysia) in healthy volunteers, and to determine the effective dose at which an immunomodulatory effect is observed. Methodology. Umbilical cord samples were collected after delivery of full-term, healthy babies with written consent from both parents. All 3 generations (newborn, parents, and grandparents) were screened for genetic mutations, infections, cancers, and other inherited diseases. Samples were transferred to a certified Good Manufacturing Practice laboratory for processing. Subjects were infused with either low dose (LD, 65 million cells) or high dose (HD, 130 million cells) of CLV-100 and followed up for 6 months. We measured cytokines using ELISA including anti-inflammatory cytokines interleukin 1 receptor antagonist (IL-1RA), interleukin 10 (IL-10), pro-/anti-inflammatory cytokine interleukin 6 (IL-6), and the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α).

    Results: 11 healthy subjects (LD, n = 5; HD, n = 6; mean age of 55 ± 13 years) were recruited. All subjects tolerated the CLV-100 infusion well with no adverse reaction throughout the study especially in vital parameters and routine blood tests. At 6 months, the HD group had significantly higher levels of anti-inflammatory markers IL1-RA (705 ± 160 vs. 306 ± 36 pg/mL; p = 0.02) and IL-10 (321 ± 27 vs. 251 ± 28 pg/mL; p = 0.02); and lower levels of proinflammatory marker TNF-α (74 ± 23 vs. 115 ± 15 pg/mL; p = 0.04) compared to LD group.

    Conclusion: Allogeneic UCMSCs CLV-100 infusion is safe and well-tolerated in low and high doses. Anti-inflammatory effect is observed with a high-dose infusion.

    Matched MeSH terms: Umbilical Cord
  14. Malekpour K, Hazrati A, Zahar M, Markov A, Zekiy AO, Navashenaq JG, et al.
    Stem Cell Rev Rep, 2022 Mar;18(3):933-951.
    PMID: 34169411 DOI: 10.1007/s12015-021-10185-z
    Musculoskeletal disorders (MSDs) are conditions that can affect muscles, bones, and joints. These disorders are very painful and severely limit patients' mobility and are more common in the elderly. MSCs are multipotent stem cells isolated from embryonic (such as the umbilical cord) and mature sources (such as adipose tissue and bone marrow). These cells can differentiate into various cells such as osteoblasts, adipocytes, chondrocytes, NP-like cells, Etc. Due to MSC characteristics such as immunomodulatory properties, ability to migrate to the site of injury, recruitment of cells involved in repair, production of growth factors, and large amount production of extracellular vesicles, these cells have been used in many regenerative-related medicine studies. Also, MSCs produce different types of EVs, such as exosomes, to the extracellular environment. Exosomes reflect MSCs' characteristics and do not have cell therapy-associated problems because they are cell-free. These vesicles carry proteins, nucleic acids, and lipids to the host cell and change their function. This review focuses on MSCs and MSCs exosomes' role in repairing dense connective tissues such as tendons, cartilage, invertebrate disc, bone fracture, and osteoporosis treatment.
    Matched MeSH terms: Umbilical Cord
  15. Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, et al.
    Stem Cell Res Ther, 2021 01 12;12(1):54.
    PMID: 33436065 DOI: 10.1186/s13287-020-02088-6
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an incurable and debilitating chronic disease characterized by progressive airflow limitation associated with abnormal levels of tissue inflammation. Therefore, stem cell-based approaches to tackle the condition are currently a focus of regenerative therapies for COPD. Extracellular vesicles (EVs) released by all cell types are crucially involved in paracrine, extracellular communication. Recent advances in the field suggest that stem cell-derived EVs possess a therapeutic potential which is comparable to the cells of their origin.

    METHODS: In this study, we assessed the potential anti-inflammatory effects of human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs in a rat model of COPD. EVs were isolated from hUC-MSCs and characterized by the transmission electron microscope, western blotting, and nanoparticle tracking analysis. As a model of COPD, male Sprague-Dawley rats were exposed to cigarette smoke for up to 12 weeks, followed by transplantation of hUC-MSCs or application of hUC-MSC-derived EVs. Lung tissue was subjected to histological analysis using haematoxylin and eosin staining, Alcian blue-periodic acid-Schiff (AB-PAS) staining, and immunofluorescence staining. Gene expression in the lung tissue was assessed using microarray analysis. Statistical analyses were performed using GraphPad Prism 7 version 7.0 (GraphPad Software, USA). Student's t test was used to compare between 2 groups. Comparison among more than 2 groups was done using one-way analysis of variance (ANOVA). Data presented as median ± standard deviation (SD).

    RESULTS: Both transplantation of hUC-MSCs and application of EVs resulted in a reduction of peribronchial and perivascular inflammation, alveolar septal thickening associated with mononuclear inflammation, and a decreased number of goblet cells. Moreover, hUC-MSCs and EVs ameliorated the loss of alveolar septa in the emphysematous lung of COPD rats and reduced the levels of NF-κB subunit p65 in the tissue. Subsequent microarray analysis revealed that both hUC-MSCs and EVs significantly regulate multiple pathways known to be associated with COPD.

    CONCLUSIONS: In conclusion, we show that hUC-MSC-derived EVs effectively ameliorate by COPD-induced inflammation. Thus, EVs could serve as a new cell-free-based therapy for the treatment of COPD.

    Matched MeSH terms: Umbilical Cord
  16. Raja Nor Suhaila, Sabreena Safuan
    Sains Malaysiana, 2017;46:463-468.
    Human umbilical vein endothelial cell (HUVEC) isolated from umbilical cord is widely used as endothelial cell model.
    However, HUVEC has been characteristically hard to maintain and showed molecular heterogeneity depending on the
    umbilical cord donors. Commercial HUVEC is commonly derived from European and Caucasian population which have
    different molecular characteristics from Asian women. This study aimed to optimize the isolation and culture condition of
    HUVEC using combinations of growth factors and extracellular matrix components so that the isolated HUVEC will purely
    represent the population under study. Umbilical cords were obtained from women post-labour. Different incubation times
    and digestive enzymes were used during endothelial cells isolation process. The culture conditions were optimized based
    on the coating materials and the media supplements. The results showed that 0.1% collagenase for 40 min incubation
    was the optimal isolation condition of HUVEC. HUVEC grown in 0.2% gelatin coated plate with 10% heat-inactivated
    fetal calf serum showed higher proliferative capacity and reduced cell death compared to other conditions (p<0.05). The
    results generated from this study provide a basic protocol of HUVEC isolation and culture conditions in order to generate
    working endothelial cell populations purely represent the Malaysian population.
    Matched MeSH terms: Umbilical Cord
  17. Azmi SM, Salih M, Abdelrazeg S, Roslan FF, Mohamed R, Tan JJ, et al.
    Regen Med, 2020 03;15(3):1381-1397.
    PMID: 32253974 DOI: 10.2217/rme-2019-0103
    Aim: As a strategy to improve the outcome of ex vivo cultivated corneal epithelial transplantation, the role of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is investigated in promoting corneal epithelial growth and functions. Materials & methods: Human telomerase-immortalized corneal epithelial cells were characterized and its functions evaluated by scratch migration assay, cellular senescence, HLA expression and spheres formation with hUC-MSC. Results: Expression of corneal epithelial markers was influenced by the duration and method of co-culture. Indirect co-culture improved cellular migration and delayed senescence when treated after 3 and 5 days. hUC-MSC downregulated expression of HLA Class I and II in IFN-γ-stimulated human telomerase-immortalized corneal epithelial cells. Conclusion: hUC-MSC promote corneal epithelial growth and functions after treatment with hUC-MSC.
    Matched MeSH terms: Umbilical Cord/cytology*; Umbilical Cord/metabolism
  18. Gupta G, Hussain MS, Thapa R, Dahiya R, Mahapatra DK, Bhat AA, et al.
    Regen Med, 2023 Sep;18(9):675-678.
    PMID: 37554111 DOI: 10.2217/rme-2023-0077
    Matched MeSH terms: Umbilical Cord
  19. Tai L, Saffery NS, Chin SP, Cheong SK
    Regen Med, 2023 Nov;18(11):839-856.
    PMID: 37671699 DOI: 10.2217/rme-2023-0085
    Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.
    Matched MeSH terms: Umbilical Cord/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links