Displaying publications 1 - 20 of 359 in total

Abstract:
Sort:
  1. Azmi AN, Tan SS, Mohamed R
    World J Gastroenterol, 2014 Sep 14;20(34):12045-55.
    PMID: 25232242 DOI: 10.3748/wjg.v20.i34.12045
    The natural history of chronic hepatitis B is characterized by different phases of infection, and patients may evolve from one phase to another or may revert to a previous phase. The hepatitis B e antigen (HBeAg)-negative form is the predominant infection worldwide, which consists of individuals with a range of viral replication and liver disease severity. Although alanine transaminase (ALT) remains the most accessible test available to clinicians for monitoring the liver disease status, further evaluations are required for some patients to assess if treatment is warranted. Guidance from practice guidelines together with thorough investigations and classifications of patients ensure recognition of who needs which level of care. This article aims to assist physicians in the assessment of HBeAg-negative individuals using liver biopsy or non-invasive tools such as hepatitis B s antigen quantification and transient elastography in addition to ALT and hepatitis B virus DNA, to identify who will remain stable, who will reactivate or at risk of disease progression hence will benefit from timely initiation of anti-viral therapy.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  2. Tan WS, Ho KL
    World J Gastroenterol, 2014 Sep 7;20(33):11650-70.
    PMID: 25206271 DOI: 10.3748/wjg.v20.i33.11650
    Hepatitis B virus (HBV) has killed countless lives in human history. The invention of HBV vaccines in the 20(th) century has reduced significantly the rate of the viral infection. However, currently there is no effective treatment for chronic HBV carriers. Newly emerging vaccine escape mutants and drug resistant strains have complicated the viral eradication program. The entire world is now facing a new threat of HBV and human immunodeficiency virus co-infection. Could phage display provide solutions to these life-threatening problems? This article reviews critically and comprehensively the innovative and potential applications of phage display in the development of vaccines, therapeutic agents, diagnostic reagents, as well as gene and drug delivery systems to combat HBV. The application of phage display in epitope mapping of HBV antigens is also discussed in detail. Although this review mainly focuses on HBV, the innovative applications of phage display could also be extended to other infectious diseases.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  3. Sukeepaisarnjaroen W, Pham T, Tanwandee T, Nazareth S, Galhenage S, Mollison L, et al.
    World J Gastroenterol, 2015 Jul 28;21(28):8660-9.
    PMID: 26229408 DOI: 10.3748/wjg.v21.i28.8660
    To examined the efficacy and safety of treatment with boceprevir, PEGylated-interferon and ribavirin (PR) in hepatitis C virus genotype 1 (HCVGT1) PR treatment-failures in Asia.
    Matched MeSH terms: Antiviral Agents/adverse effects; Antiviral Agents/therapeutic use*
  4. Anasir MI, Ramanathan B, Poh CL
    Viruses, 2020 03 26;12(4).
    PMID: 32225021 DOI: 10.3390/v12040367
    Dengue virus (DENV) presents a significant threat to global public health with more than 500,000 hospitalizations and 25,000 deaths annually. Currently, there is no clinically approved antiviral drug to treat DENV infection. The envelope (E) glycoprotein of DENV is a promising target for drug discovery as the E protein is important for viral attachment and fusion. Understanding the structure and function of DENV E protein has led to the exploration of structure-based drug discovery of antiviral compounds and peptides against DENV infections. This review summarizes the structural information of the DENV E protein with regards to DENV attachment and fusion. The information enables the development of antiviral agents through structure-based approaches. In addition, this review compares the potency of antivirals targeting the E protein with the antivirals targeting DENV multifunctional enzymes, repurposed drugs and clinically approved antiviral drugs. None of the current DENV antiviral candidates possess potency similar to the approved antiviral drugs which indicates that more efforts and resources must be invested before an effective DENV drug materializes.
    Matched MeSH terms: Antiviral Agents/pharmacology*; Antiviral Agents/chemistry*
  5. Sakkhachornphop S, Hadpech S, Wisitponchai T, Panto C, Kantamala D, Utaipat U, et al.
    Viruses, 2018 11 13;10(11).
    PMID: 30428529 DOI: 10.3390/v10110625
    Certain proteins have demonstrated proficient human immunodeficiency virus (HIV-1) life cycle disturbance. Recently, the ankyrin repeat protein targeting the HIV-1 capsid, AnkGAG1D4, showed a negative effect on the viral assembly of the HIV-1NL4-3 laboratory strain. To extend its potential for future clinical application, the activity of AnkGAG1D4 in the inhibition of other HIV-1 circulating strains was evaluated. Chimeric NL4-3 viruses carrying patient-derived Gag/PR-coding regions were generated from 131 antiretroviral drug-naïve HIV-1 infected individuals in northern Thailand during 2001⁻2012. SupT1, a stable T-cell line expressing AnkGAG1D4 and ankyrin non-binding control (AnkA32D3), were challenged with these chimeric viruses. The p24CA sequences were analysed and classified using the K-means clustering method. Among all the classes of virus classified using the p24CA sequences, SupT1/AnkGAG1D4 demonstrated significantly lower levels of p24CA than SupT1/AnkA32D3, which was found to correlate with the syncytia formation. This result suggests that AnkGAG1D4 can significantly interfere with the chimeric viruses derived from patients with different sequences of the p24CA domain. It supports the possibility of ankyrin-based therapy as a broad alternative therapeutic molecule for HIV-1 gene therapy in the future.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  6. Lee MF, Wu YS, Poh CL
    Viruses, 2023 Mar 08;15(3).
    PMID: 36992414 DOI: 10.3390/v15030705
    Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.
    Matched MeSH terms: Antiviral Agents/pharmacology; Antiviral Agents/therapeutic use; Antiviral Agents/chemistry
  7. Chong HY, Leow CY, Abdul Majeed AB, Leow CH
    Virus Res, 2019 12;274:197770.
    PMID: 31626874 DOI: 10.1016/j.virusres.2019.197770
    Flaviviruses are group of single stranded RNA viruses that cause severe endemic infection and epidemics on a global scale. It presents a significant health impact worldwide and the viruses have the potential to emerge and outbreak in a non-endemic geographical region. Effective vaccines for prophylaxis are only available for several flaviviruses such as Yellow Fever virus, Tick-borne Encephalitis Virus, Dengue Virus and Japanese Encephalitis Virus and there is no antiflaviviral agent being marketed. This review discusses the flavivirus genome, replication cycle, epidemiology, clinical presentation and pathogenesis upon infection. Effective humoral response is critical to confer protective immunity against flaviviruses. Hence, we have also highlighted the immune responses elicited upon infection, various diagnostic facilities available for flaviviral disease and monoclonal antibodies available to date against flavivirus infection.
    Matched MeSH terms: Antiviral Agents/immunology; Antiviral Agents/therapeutic use
  8. Mehrbod P, Ideris A, Omar AR, Hair-Bejo M, Tan SW, Kheiri MT, et al.
    Virol J, 2012;9:44.
    PMID: 22340010 DOI: 10.1186/1743-422X-9-44
    The influenza virus is still one of the most important respiratory risks affecting humans which require effective treatments. In this case, traditional medications are of interest. HESA-A is an active natural biological compound from herbal-marine origin. Previous studies have reported that the therapeutic properties of HESA-A are able to treat psoriasis vulgaris and cancers. However, no antiviral properties have been reported.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  9. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S
    Virol J, 2011;8:560.
    PMID: 22201648 DOI: 10.1186/1743-422X-8-560
    Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for each compound.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  10. Rajik M, Jahanshiri F, Omar AR, Ideris A, Hassan SS, Yusoff K
    Virol J, 2009;6:74.
    PMID: 19497129 DOI: 10.1186/1743-422X-6-74
    Avian influenza viruses (AIV) cause high morbidity and mortality among the poultry worldwide. Their highly mutative nature often results in the emergence of drug resistant strains, which have the potential of causing a pandemic. The virus has two immunologically important glycoproteins, hemagglutinin (HA), neuraminidase (NA), and one ion channel protein M2 which are the most important targets for drug discovery, on its surface. In order to identify a peptide-based virus inhibitor against any of these surface proteins, a disulfide constrained heptapeptide phage display library was biopanned against purified AIV sub-type H9N2 virus particles.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  11. Balakrishnan KN, Abdullah AA, Bala JA, Jesse FFA, Abdullah CAC, Noordin MM, et al.
    Virol J, 2020 Oct 27;17(1):164.
    PMID: 33109247 DOI: 10.1186/s12985-020-01436-5
    BACKGROUND: Cytomegalovirus (CMV) is an opportunistic pathogen that causes severe complications in congenitally infected newborns and non-immunocompetent individuals. Developing an effective vaccine is a major public health priority and current drugs are fronting resistance and side effects on recipients. In the present study, with the aim of exploring new strategies to counteract CMV replication, several anti-CMV siRNAs targeting IE2 and DNA polymerase gene regions were characterized and used as in combinations for antiviral therapy.

    METHODS: The rat embryo fibroblast (REF) cells were transfected with multi siRNA before infecting with CMV strain ALL-03. Viral growth inhibition was measured by tissue culture infectious dose (TCID50), cytopathic effect (CPE) and droplet digital PCR (ddPCR) while IE2 and DNA polymerase gene knockdown was determined by real-time PCR. Ganciclovir was deployed as a control to benchmark the efficacy of antiviral activities of respective individual siRNAs.

    RESULTS: There was no significant cytotoxicity encountered for all the combinations of siRNAs on REF cells analyzed by MTT colorimetric assay (P > 0.05). Cytopathic effects (CPE) in cells infected by RCMV ALL-03 had developed significantly less and at much slower rate compared to control group. The expression of targeted genes was downregulated successfully resulted in significant reduction (P 

    Matched MeSH terms: Antiviral Agents
  12. Abdul Ahmad SA, Palanisamy UD, Khoo JJ, Dhanoa A, Syed Hassan S
    Virol J, 2019 02 27;16(1):26.
    PMID: 30813954 DOI: 10.1186/s12985-019-1127-7
    BACKGROUND: Dengue continues to be a major international public health concern. Despite that, there is no clinically approved antiviral for treatment of dengue virus (DENV) infections. In this study, geraniin extracted from the rind of Nephelium lappaceum was shown to inhibit the replication of DENV-2 in both in vitro and in vivo experiments.

    METHODS: The effect of geraniin on DENV-2 RNA synthesis in infected Vero cells was tested using quantitative RT-PCR. The in vivo efficacy of geraniin in inhibiting DENV-2 infection was then tested using BALB/c mice with geraniin administered at three different times. The differences in spleen to body weight ratio, DENV-2 RNA load and liver damage between the three treatment groups as compared to DENV-2 infected mice without geraniin administration were determined on day eight post-infection.

    RESULTS: Quantitative RT-PCR confirmed the decrease in viral RNA synthesis of infected Vero cells when treated with geraniin. Geraniin seemed to provide a protective effect on infected BALB/c mice liver when given at 24 h pre- and 24 h post-infection as liver damage was observed to be very mild even though a significant reduction of DENV-2 RNA load in serum was not observed in these two treatment groups. However, when administered at 72 h post-infection, severe liver damage in the form of necrosis and haemorrhage had prevailed despite a substantial reduction of DENV-2 RNA load in serum.

    CONCLUSIONS: Geraniin was found to be effective in reducing DENV-2 RNA load when administered at 72 h post-infection while earlier administration could prevent severe liver damage caused by DENV-2 infection. These results provide evidence that geraniin is a potential candidate for the development of anti-dengue drug.

    Matched MeSH terms: Antiviral Agents/pharmacology*
  13. Abdul Ahmad SA, Palanisamy UD, Tejo BA, Chew MF, Tham HW, Syed Hassan S
    Virol J, 2017 11 21;14(1):229.
    PMID: 29162124 DOI: 10.1186/s12985-017-0895-1
    BACKGROUND: The rapid rise and spread in dengue cases, together with the unavailability of safe vaccines and effective antiviral drugs, warrant the need to discover and develop novel anti-dengue treatments. In this study the antiviral activity of geraniin, extracted from the rind of Nephelium lappaceum, against dengue virus type-2 (DENV-2) was investigated.

    METHODS: Geraniin was prepared from Nephelium lappaceum rind by reverse phase C-18 column chromatography. Cytotoxicity of geraniin towards Vero cells was evaluated using MTT assay while IC50 value was determined by plaque reduction assay. The mode-of-action of geraniin was characterized using the virucidal, attachment, penetration and the time-of-addition assays'. Docking experiments with geraniin molecule and the DENV envelope (E) protein was also performed. Finally, recombinant E Domain III (rE-DIII) protein was produced to physiologically test the binding of geraniin to DENV-2 E-DIII protein, through ELISA competitive binding assay.

    RESULTS: Cytotoxicity assay confirmed that geraniin was not toxic to Vero cells, even at the highest concentration tested. The compound exhibited DENV-2 plaque formation inhibition, with an IC50 of 1.75 μM. We further revealed that geraniin reduced viral infectivity and inhibited DENV-2 from attaching to the cells but had little effect on its penetration. Geraniin was observed to be most effective when added at the early stage of DENV-2 infection. Docking experiments showed that geraniin binds to DENV E protein, specifically at the DIII region, while the ELISA competitive binding assay confirmed geraniin's interaction with rE-DIII with high affinity.

    CONCLUSIONS: Geraniin from the rind of Nephelium lappaceum has antiviral activity against DENV-2. It is postulated that the compound inhibits viral attachment by binding to the E-DIII protein and interferes with the initial cell-virus interaction. Our results demonstrate that geraniin has the potential to be developed into an effective antiviral treatment, particularly for early phase dengue viral infection.

    Matched MeSH terms: Antiviral Agents/metabolism; Antiviral Agents/pharmacology
  14. Lee MF, Anasir MI, Poh CL
    Virology, 2023 Mar;580:10-27.
    PMID: 36739680 DOI: 10.1016/j.virol.2023.01.016
    Dengue infections pose a critical threat to public health worldwide. Since there are no clinically approved antiviral drugs to treat dengue infections caused by the four dengue virus (DENV) serotypes, there is an urgent need to develop effective antivirals. Peptides are promising antiviral candidates due to their specificity and non-toxic properties. The DENV envelope (E) protein was selected for the design of antiviral peptides due to its importance in receptor binding and viral fusion to the host cell membrane. Twelve novel peptides were designed to mimic regions containing critical amino acid residues of the DENV E protein required for interaction with the host. A total of four peptides were identified to exhibit potent inhibitory effects against at least three or all four DENV serotypes. Peptide 3 demonstrated all three modes of action: cell protection and inhibition of post-infection against all four DENV serotypes, whereas direct virus-inactivating effects were only observed against DENV-2, 3, and 4. Peptide 4 showed good direct virus-inactivating effects against DENV-2 (74.26%) as well as good inhibitions of DENV-1 (80.37%) and DENV-4 (72.22%) during the post-infection stage. Peptide 5 exhibited direct virus-inactivating effects against all four DENV serotypes, albeit at lower inhibition levels against DENV-1 and DENV-3. It also exhibited highly significant inhibition of DENV-4 (89.31%) during post-infection. Truncated peptide 5F which was derived from peptide 5 showed more significant inhibition of DENV-4 (91.58%) during post-infection and good direct virus-inactivating effects against DENV-2 (77.55%) at a lower concentration of 100 μM. Peptide 3 could be considered as the best antiviral candidate for pre- and post-infection treatments of DENV infections in regions with four circulating dengue serotypes. However, if the most predominant dengue serotype for a particular region could be identified, peptides with significantly high antiviral activities against that particular dengue serotype could serve as more suitable antiviral candidates. Thus, peptide 5F serves as a more suitable antiviral candidate for post-infection treatment against DENV-4.
    Matched MeSH terms: Antiviral Agents/pharmacology
  15. Ahola T, Couderc T, Courderc T, Ng LF, Hallengärd D, Powers A, et al.
    Vector Borne Zoonotic Dis, 2015 Apr;15(4):250-7.
    PMID: 25897811 DOI: 10.1089/vbz.2014.1681
    Currently, there are no licensed vaccines or therapies available against chikungunya virus (CHIKV), and these were subjects discussed during a CHIKV meeting recently organized in Langkawi, Malaysia. In this review, we chart the approaches taken in both areas. Because of a sharp increase in new data in these fields, the present paper is complementary to previous reviews by Weaver et al. in 2012 and Kaur and Chu in 2013 . The most promising antivirals so far discovered are reviewed, with a special focus on the virus-encoded replication proteins as potential targets. Within the vaccines in development, our review emphasizes the various strategies in parallel development that are unique in the vaccine field against a single disease.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  16. Hiebert L, Hecht R, Soe-Lin S, Mohamed R, Shabaruddin FH, Syed Mansor SM, et al.
    Value Health Reg Issues, 2019 May;18:112-120.
    PMID: 30921591 DOI: 10.1016/j.vhri.2018.12.005
    BACKGROUND: In Malaysia, more than 330 000 individuals are estimated to be chronically infected with hepatitis C virus (HCV), but less than 2% have been treated to date.

    OBJECTIVES: To estimate the required coverage and costs of a national screening strategy to inform the launch of an HCV elimination program.

    METHODS: We designed an HCV screening strategy based on a "stepwise" approach. This approach relied on targeting of people who inject drugs in the early years, with delayed onset of widespread general population screening. Annual coverage requirements and associated costs were estimated to ensure that the World Health Organization elimination treatment targets were met.

    RESULTS: In total, 6 million individuals would have to be screened between 2018 and 2030. Targeting of people who inject drugs in the early years would limit annual screening coverage to less than 1 million individuals from 2018 to 2026. General population screening would have to be launched by 2026. Total costs were estimated at MYR 222 million ($58 million). Proportional to coverage targets, 60% of program costs would fall from 2026 to 2030.

    CONCLUSIONS: This exercise was one of the first attempts to conduct a detailed analysis of the required screening coverage and costs of a national HCV elimination strategy. These findings suggest that the stepwise approach could delay the onset of general population screening by more than 5 years after the program's launch. This delay would allow additional time to mobilize investments required for a successful general population screening program and also minimize program costs. This strategy prototype could inform the design of effective screening strategies in other countries.

    Matched MeSH terms: Antiviral Agents/economics; Antiviral Agents/therapeutic use
  17. Ong HK, Yong CY, Tan WS, Yeap SK, Omar AR, Razak MA, et al.
    Vaccines (Basel), 2019 08 19;7(3).
    PMID: 31430965 DOI: 10.3390/vaccines7030091
    Current seasonal influenza A virus (IAV) vaccines are strain-specific and require annual reconstitution to accommodate the viral mutations. Mismatches between the vaccines and circulating strains often lead to high morbidity. Hence, development of a universal influenza A vaccine targeting all IAV strains is urgently needed. In the present study, the protective efficacy and immune responses induced by the extracellular domain of Matrix 2 protein (M2e) displayed on the virus-like particles of Macrobrachium rosenbergii nodavirus (NvC-M2ex3) were investigated in BALB/c mice. NvC-M2ex3 was demonstrated to be highly immunogenic even in the absence of adjuvants. Higher anti-M2e antibody titers corresponded well with increased survival, reduced immunopathology, and morbidity of the infected BALB/c mice. The mice immunized with NvC-M2ex3 exhibited lower H1N1 and H3N2 virus replication in the respiratory tract and the vaccine activated the production of different antiviral cytokines when they were challenged with H1N1 and H3N2. Collectively, these results suggest that NvC-M2ex3 could be a potential universal influenza A vaccine.
    Matched MeSH terms: Antiviral Agents
  18. Azit NA, Sahran S, Meng LV, Subramaniam MK, Mokhtar S, Nawi AM
    Turk J Med Sci, 2022 Oct;52(5):1580-1590.
    PMID: 36422484 DOI: 10.55730/1300-0144.5498
    BACKGROUND: To determine the survival outcomes and prognostic factors associated with hepatocellular carcinoma (HCC) survival in type 2 diabetes (T2D) patients.

    METHODS: This was a retrospective cohort study involving two hepatobiliary centres from January 1, 2012, to June 30, 2018. Medical records were analysed for sociodemographic, clinical characteristics, laboratory testing, and HCC treatment information. Survival outcomes were examined using the Kaplan-Meier and log-rank test. Prognostic factors were determined using multivariate Cox regression.

    RESULTS: A total of 212 patients were included in the study. The median survival time was 22 months. The 1-, 3-, and 5-year survival rates were 64.2%, 34.2%, and 18.0%, respectively. Palliative treatment (adjusted hazard ratio [AHR] = 2.82, 95% confidence interval [CI] 1.75-4.52), tumour size ≥ 5 cm (AHR = 2.02, 95%CI: 1.45-2.82), traditional medication (AHR = 1.94, 95%CI: 1.27-2.98), raised alkaline phosphatase (AHR = 1.74, 95%CI: 1.25-2.42), and metformin (AHR = 1.44, 95%CI: 1.03-2.00) were significantly associated with poor prognosis for HCC survival. Antiviral hepatitis treatment (AHR = 0.54, 95% CI: 0.34-0.87), nonalcoholic fatty liver disease (NAFLD) (AHR = 0.50, 95% CI: 0.30-0.84), and family history of malignancies (AHR = 0.50, 95%CI: 0.26-0.96) were identified as good prognostic factors for HCC survival.

    DISCUSSION: Traditional medication, metformin treatment, advanced stage and raised alkaline phosphatase were the poor prognostic factors, while antiviral hepatitis treatment, NAFLD, and family history of malignancies were the good prognostic factors for our HCC cases comorbid with T2D.

    Matched MeSH terms: Antiviral Agents
  19. Maryam M, Tan SL, Crouse KA, Mohamed Tahir MI, Chee HY
    Turk J Chem, 2020;44(5):1395-1409.
    PMID: 33488239 DOI: 10.3906/kim-2006-22
    A series of Schiff bases have been successfully synthesized through the acid-catalyzed condensation of S-substituted dithiocarbazates and three enantiomerically pure monoterpenes, (1 R )-(+)-camphor, (1 S )-(-)-camphor, (1 R )-(-)-camphorquinone, (1 S )-(+)-camphorquinone, ( R )-(-)-carvone and ( S )-(+)-carvone. Spectroscopic results revealed that the Schiff bases containing camphor or carvone likely adopted an E -configuration along the characteristic imine bond while those containing camphorquinone assumed a Z -configuration. The antidengue potential of these compounds was evaluated based on DENV 2 caused cytopathic effect (CPE) reduction-based in vitro evaluation. The compounds were validated through secondary foci forming unit reduction assay (FFURA). Compounds were also tested for their cytotoxicity against Vero cells. The compounds showed variable degrees of antiviral activity with the camphor compounds displaying the highest antidengue potential. The enantiomers of the compounds behaved almost similarly during the antiviral evaluation.
    Matched MeSH terms: Antiviral Agents
  20. Rothan HA, Zulqarnain M, Ammar YA, Tan EC, Rahman NA, Yusof R
    Trop Biomed, 2014 Jun;31(2):286-96.
    PMID: 25134897 MyJurnal
    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.
    Matched MeSH terms: Antiviral Agents/isolation & purification; Antiviral Agents/pharmacology*; Antiviral Agents/toxicity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links