Apoptosis is a series of molecular signalling regulating normal cellular growth and development. Cells resistance to apoptosis, however, leads to uncontrolled proliferation. Research involving cancer cell death is one of the most important targeted areas in the discovery of novel anticancer therapy. There are several biochemical pathways that are liked towards cancer cell death of which, uridine-cytidine kinase 2 (UCK2) was recently linked to cell apoptosis induction. UCK2 is responsible for the phosphorylation of uridine and cytidine to their corresponding monophosphate in a salvage pathway of pyrimidine nucleotides biosynthesis. Cytotoxic ribonucleoside analogues that target UCK2 enzyme activity are currently being investigated in clinical trials useful for cancer treatment. Whilst findings have clearly shown that these antimetabolites inhibit cancer development in clinical settings, they have yet to establish linking cytotoxic nucleoside analogues to cancer cell death. In this present review, we propose the probable molecular crosstalk involving UCK2 protein and cancer cell death through cell cycle arrest and triggering of apoptosis involving proteins, MDM2 and the subsequent activation of p53.
Dengue virus type 2 (DENV-2) infection induced apoptotic cellular DNA fragmentation in Vero cells within 8 days of infection. The addition of high concentrations of extracellular Zn(2+) but not Ca(2+), Mg(2+) or Mn(2+) to the cell culture medium hastened the detection of apoptosis to within 4 h after infection. No apoptotic cellular DNA fragmentation was detected in the cell culture treated with Zn(2+) alone or infected with heat- or ultraviolet light-inactivated DENV-2 in the presence of Zn(2+). These results suggest that (i) apoptosis is induced in African green monkey kidney cells infected with live DENV-2 and (ii) the addition of high extracellular Zn(2+) accelerates detection of apoptosis in the DENV-2-infected cells.
Typhonium flagelliforme is an indigenous plant of Malaysia and is used by the local communities to treat cancer. This study aims to identify the chemical constituents of Typhonium flagelliforme particularly those which have antiproliferative properties towards human cancer cell lines.
Newcastle disease virus (NDV) is a virus of paramyxovirus family and lately has been studied for the treatment of cancer in human. In this study, we successfully determined the oncolysis potential of NDV vaccine, V4UPM tested on the human glioblastoma multiform cell line (DBTRG.05MG) and human glioblastoma astrocytoma cell line (U-87MG) in vitro and in vivo. The V4UPM strain is a modified V4 strain developed as thermostable feed pellet vaccine for poultry.
The study of apoptosis in endometrium of women with irregular uterine bleeding and its predictive value in endometrial malignancy. Analyze apoptotic and mitotic indices and their relevance in irregular uterine bleeding. To determine the expression of Bcl-2 oncoprotein in endometrial glands from patients with irregular uterine bleeding. Department of pathology in a Government Hospital serving a varied socio-economic population in Chennai. Random samples of endometrial currettings from dysfunctional uterine bleeding (DUB) patient who underwent endometrial curettage as therapeutic and diagnostic procedure during the year 2000. Of 50 cases of endometrial samples from patients diagnosed as cases of DUB, the apoptotic and mitotic indexing was carried out and histological categorization revealed 13 cases as Anovulatory. 14 as simple hyperplasia, 5 as early secretory endometrium, 4 as mid secretory and 4 as late secretory endometrium and 7 as endometrium showing features of hormonal imbalance. Three cases were not included, due to sub-optimal processing. A good correlation of the Bcl-2 expression and the apoptotic cell morphology/indices, in the different categories of the endometria of DUB cases is observed. This preliminary study gives an insight to the existence of a correlative pattern of apoptosis in DUB cases. A prospective study on a larger number of cases may substantiate the hypothesis that the Apoptotic and Mitotic indices are useful screening methods with predictive values on development of endometrial carcinoma. It is observed that an increased apoptotic index correlating with high Bcl-2 expression, reflecting the actual cell burden. This prolonged cell survival resisting cell deletion is associated with irregular uterine bleeding endometria.
The effects of Enterovirus 71 (HEV71) infection on African green monkey kidney cells (Vero) were investigated. It was found that the infected cells showed progressive cellular morphological changes characteristic in apoptotic cells within 10 hours post-infection. The number of apoptotic cells correlated significantly with the number of HEV71 antigen positive cells when cells were labeled using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) and stained for HEV71 antigen. Approximately 11, 26, 45 and 50% of the infected cells were apoptotic at 12, 24, 48 and 72 hours post-infection, respectively. Internucleosomal DNA fragmentation, characteristic in the late stage of apoptosis was noted beginning on day 2 post-infection. The DNA fragmentation, however, was absent in cells treated with the heat- and ultraviolet light-inactivated virus inocula. These results demonstrate the capacity of HEV71 to induce apoptosis in the infected cells. The induction, however, requires high level of HEV71 infectivity and the presence of live virus particles, suggesting the need for the presence of specific viral proteins for apoptosis to occur.
Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.
Introduction Helicobacter pylori causes, via the influence of several virulence factors, persistent infection of the stomach, which leads to severe complications. Vacuolating cytotoxin A (VacA) is observed in almost all clinical strains of H. pylori; however, only some strains produce the toxigenic and pathogenic VacA, which is influenced by the gene sequence variations. VacA exerts its action by causing cell vacuolation and apoptosis. We performed a PubMed search to review the latest literatures published in English language. Areas covered Articles regarding H. pylori VacA and its genotypes, architecture, internalization, and role in gastric infection and pathogenicity are reviewed. We included the search for recently published literature until January 2020. Expert opinion H. pylori VacA plays a crucial role in severe gastric pathogenicity. In addition, VacA mediated in vivo bacterial survival leads to persistent infection and an enhanced bacterial evasion from the action of antibiotics and the innate host defense system, which leads to drug evasion. VacA as a co-stimulator for the CagA phosphorylation may exert a synergistic effect playing an important role in the CagA-mediated pathogenicity.
Injury to neuronal tissues in the central nervous system (CNS) of mammals results in neural degeneration and sometime leads to loss of function, whereas fish retain a remarkable potential for neuro-regeneration throughout life. Thus, understanding the mechanism of neuro-regeneration in fish CNS would be useful to improve the poor neuro-regenerative capability in mammals. In the present study, we characterized a neuro-regenerative process in the brain of a cichlid, tilapia, Oreochromis niloticus. Morphological observations showed that the damaged brain region (habenula) successfully regrew and reinnervated axonal projections by 60 days post-damage. A fluorescent carbocyanine tracer, DiI tracing revealed a recovery of the major neuronal projection from the regenerated habenula to the interpenduncular nucleus by 60 days post-damage. TUNEL assay showed a significant increase of apoptotic cells (~234%, P<0.01) at one day post-damage, while the number of bromodeoxyuridine (BrdU)-positive proliferative cells were significantly increased (~92%, P<0.05) at 7 days post-damage compared with sham-control fish. To demonstrate a potential role of apoptotic activity in the neuro-regeneration, effects of degenerative neural tissue on cell proliferation were examined in vivo. Implantation of detached neural but not non-neural tissues into the cranial cavity significantly (P<0.01) increased the number of BrdU-positive cells nearby the implantation regions at 3 days after the implantation. Furthermore, local injection of the protein extract and cerebrospinal fluid collected from injured fish brain significantly induced cell proliferation in the brain. These results suggest that factor(s) derived from apoptotic neural cells may play a critical role in the neuro-regeneration in teleost brain.
CD133 (prominin-1), a pentaspan membrane glycoprotein, is one of the most well-characterized biomarkers used for the isolation of cancer stem cells (CSCs). The presence of CSCs is one of the main causes of tumour reversal and resilience. Accumulating evidence has shown that CD133 might be responsible for CSCs tumourigenesis, metastasis and chemoresistance. It is now understood that CD133 interacts with the Wnt/β-catenin and PI3K-Akt signalling pathways. Moreover, CD133 can upregulate the expression of the FLICE-like inhibitory protein (FLIP) in CD133-positive cells, inhibiting apoptosis. In addition, CD133 can increase angiogenesis by activating the Wnt signalling pathway and increasing the expression of vascular endothelial growth factor-A (VEGF-A) and interleukin-8. Therefore, CD133 could be considered to be an 'Achilles' heel' for CSCs, because by inhibiting this protein, the signalling pathways that are involved in cell proliferation will also be inhibited. By understanding the molecular biology of CD133, we can not only isolate stem cells but can also utilise it as a therapeutic strategy. In this review, we summarise new insights into the fundamental cell biology of CD133 and discuss the involvement of CD133 in metastasis, metabolism, tumourigenesis, drug-resistance, apoptosis and autophagy.
There is now a wealth of information regarding the apoptotic mode of cell death and its importance in toxicological studies in many mammalian organs including the liver. In this study, we investigated the modulatory effects of the heavy metal Zn2+ on transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in primary rat hepatocytes. Apoptosis induced by TGF-beta1 (1 ng/ml) in hepatocytes was accompanied by nuclear condensation as assessed morphologically by staining with Hoechst 33258 and DNA cleavage as detected biochemically by in situ end-labeling, field inversion and conventional gel electrophoresis. Pretreatment with 100 micromol/L Zn2+ abrogated the nuclear condensation, in situ end-labeling, and DNA laddering in TGF-beta1-treated hepatocytes. Surprisingly, Zn2+ did not inhibit the formation of high-molecular-weight DNA fragments (30-50 kbp to 250-300 kbp). These data provide evidence that Zn2+ exerts its effects on the endonucleases that act downstream in the execution phase of TGF-beta1-induced apoptosis in hepatocytes.
Stilbenoids have been considered as an alternative phytotherapeutic treatment against methicillin-resistant Staphylococcus aureus (MRSA) infection. The combined effect of ε-viniferin and johorenol A with the standard antibiotics, vancomycin and linezolid, was assessed against MRSA ATCC 33591 and HUKM clinical isolate. The minimum inhibitory concentration (MIC) value of the individual tested compounds and the fractional inhibitory concentration index (FICI) value of the combined agents were, respectively, determined using microbroth dilution test and microdilution checkerboard (MDC) method. Only synergistic outcome from checkerboard test will be substantiated for its rate of bacterial killing using time-kill assay. The MIC value of ε -viniferin against ATCC 33591 and johorenol A against both strains was 0.05 mg/mL whereas HUKM strain was susceptible to 0.1 mg/mL of ε-viniferin. MDC study showed that only combination between ε-viniferin and vancomycin was synergistic against ATCC 33591 (FICI 0.25) and HUKM (FICI 0.19). All the other combinations (ε-viniferin-linezolid, johorenol A-vancomycin, and johorenol A-linezolid) were either indifferent or additive against both strains. However, despite the FICI value showing synergistic effect for ε-viniferin-vancomycin, TKA analysis displayed antagonistic interaction with bacteriostatic action against both strains. As conclusion, ε-viniferin can be considered as a bacteriostatic stilbenoid as it antagonized the bactericidal activity of vancomycin. These findings therefore disputed previous report that ε-viniferin acted in synergism with vancomycin but revealed that it targets similar site in close proximity to vancomycin's action, possibly at the bacterial membrane protein. Hence, this combination has a huge potential to be further studied and developed as an alternative treatment in combating MRSA in future.
Adhesion and fusion of epithelial sheets marks the completion of many morphogenetic events during embryogenesis. Neural tube closure involves an epithelial fusion sequence in which the apposing neural folds adhere initially via cellular protrusions, proceed to a more stable union, and subsequently undergo remodeling of the epithelial structures to yield a separate neural tube roof plate and overlying nonneural ectoderm. Cellular protrusions comprise lamellipodia and filopodia, and studies in several different systems emphasize the critical role of RhoGTPases in their regulation. How epithelia establish initial adhesion is poorly understood but, in neurulation, may involve interactions between EphA receptors and their ephrinA ligands. Epithelial remodeling is spatially and temporally correlated with apoptosis in the dorsal neural tube midline, but experimental inhibition of this cell death does not prevent fusion and remodeling. A variety of molecular signaling systems have been implicated in the late events of morphogenesis, but genetic redundancy, for example among the integrins and laminins, makes identification of the critical players challenging. An improved understanding of epithelial fusion can provide insights into normal developmental processes and may also indicate the mode of origin of clinically important birth defects.
Serum deprivation inhibits cell growth and initiates apoptosis cell death in mammalian cell cultures. Since apoptosis is a genetically controlled cell death pathway, over-expression of anti-apoptotic proteins may provide a way to delay apoptosis. This study investigated the ability of the X-linked inhibitor of apoptosis protein (XIAP) to inhibit apoptosis induced by serum deprivation. Study includes evaluation of the ability of XIAP to prolong culture period and its effect on cell proliferation in serum-deprived media. The full length human XIAP was introduced into CHO-K1 cell lines and the effects of XIAP over-expression on the inhibition of apoptosis induced by serum-deprived conditions were examined. In batch cultures, cells over-expressing XIAP showed decreased levels of apoptosis and a higher number of viable cell under serum-deprived conditions compared to the control cell lines. The viability of control cells dropped to 40% after 2days of serum deprivation, the XIAP expressing cells still maintained at a viability higher than 90%. Further investigation revealed that the caspase-3 activity of the CHO-K1 cell line was inhibited as a result of XIAP expression.
F16 is a plant-derived pharmacologically active fraction extracted from Eurycoma longifolia Jack. Previously, we have reported that F16 inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death while having some degree of cytoselectivity on a normal human breast cell line, MCF-10A. In this study, we attempted to further elucidate the mode of action of F16. We found that the intrinsic apoptotic pathway was invoked, with the reduction of Bcl-2 protein. Then, executioner caspase-7 was cleaved and activated in response to F16 treatment. Furthermore, apoptosis in the MCF- 7 cells was accompanied by the specific proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). Surprisingly, caspase-9 and p53 were unchanged with F16 treatment. We believe that the F16-induced apoptosis in MCF-7 cells occurs independently of caspase-9 and p53. Taken together, these results suggest that F16 from E. longifolia exerts anti-proliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties.
Previous studies have shown that apoptosis-like features are observed in Blastocystis spp., an intestinal protozoan parasite, when exposed to the cytotoxic drug metronidazole (MTZ). This study reports that among the four subtypes of Blastocystis spp. investigated for rate of apoptosis when treated with MTZ, subtype 3 showed the highest significant increase after 72h of in vitro culture when treated with MTZ at 0.1mg/ml (79%; p<0.01) and 0.0001mg/ml (89%; p<0.001). The close correlation between viable cells and apoptotic cells for both dosages implies that the pathogenic potential of these isolates has been enhanced when treated with MTZ. This suggests that there is a mechanism in Blastocystis spp. that actually regulates the apoptotic process to produce higher number of viable cells when treated. Apoptosis may not just be programmed cell death but instead a mechanism to increase the number of viable cells to ensure survival during stressed conditions. The findings of the present study have an important contribution to influence chemotherapeutic approaches when developing drugs against the emerging Blastocystis spp. infections.
INTRODUCTION: This study focused on PF4 effects on caspase-3,-6, -7, -8 and -9 which regulate the apopotosis process in breast cancer.
MATERIALS AND METHODS: Breast tumours were induced in forty 21-day-old female Sprague Dawley rats (SDRs) using MNU until tumour size reached 14.5 mm (SD: 0.5 mm). The rats were then divided into two groups: Group 1 (control injected with 0.9% saline; n = 20), and Group 2 (platelet factor 4 (PF4); n = 20). PF4 was administered through focal intralesional injection at 20 μg/lesion dose. Following 5-day treatment, the SDRs were sacrificed. Subsequently, representative sections from the tumour were obtained for haematoxylin and eosin (H&E) staining. The expressions of caspase-3, -6, -7, -8 and -9 were evaluated using immunohistochemistry (IHC) staining.
RESULTS: The majority of breast tumour specimens were of aggressive types [ncontrol = 13 (65%); nPF4 = 12 (60%)]. Invasive ductal carcinoma not otherwise specified (IDC-NOS) was the most commonly observed breast tumour histology for control and PF4 groups (n = 8 (40%) in respective groups). PF4-treated group exhibited significant differences in the caspase-3, -6 and -8 expression levels compared to the control group (all p < 0.001). There were no significant differences in caspase-7 (p = 0.347) and caspase-9 (p = 0.373) expression levels between both groups.
CONCLUSION: This study found that PF4 acts via the caspase-mediated extrinsic apoptosis pathway without the involvement of the intrinsic pathway.
Treatment of leukemia has become much difficult because of resistance to the existing anticancer therapies. This has thus expedited the search for alternativ therapies, and one of these is the exploitation of mesenchymal stem cells (MSCs) towards control of tumor cells. The present study investigated the effect of human umbilical cord-derived MSCs (UC-MSCs) on the proliferation of leukemic cells and gauged the transcriptomic modulation and the signaling pathways potentially affected by UC-MSCs. The inhibition of growth of leukemic tumor cell lines was assessed by proliferation assays, apoptosis and cell cycle analysis. BV173 and HL-60 cells were further analyzed using microarray gene expression profiling. The microarray results were validated by RT-qPCR and western blot assay for the corresponding expression of genes and proteins. The UC-MSCs attenuated leukemic cell viability and proliferation in a dose-dependent manner without inducing apoptosis. Cell cycle analysis revealed that the growth of tumor cells was arrested at the G0/G1 phase. The microarray results identified that HL-60 and BV173 share 35 differentially expressed genes (DEGs) (same expression direction) in the presence of UC-MSCs. In silico analysis of these selected DEGs indicated a significant influence in the cell cycle and cell cycle-related biological processes and signaling pathways. Among these, the expression of DBF4, MDM2, CCNE2, CDK6, CDKN1A, and CDKN2A was implicated in six different signaling pathways that play a pivotal role in the anti-tumorigenic activity exerted by UC-MSCs. The UC-MSCs perturbate the cell cycle process of leukemic cells via dysregulation of tumor suppressor and oncogene expression.
Lung cancer remains a major health problem with a low 5-year survival rate of patients. Recent studies have shown that dysregulation of microRNAs (miRNAs) are prevalent in lung cancer and these aberrations play a significant role in the progression of tumour progression. In the present study, bioinformatics analyses was employed to predict potential miR-608 targets, which are associated with signaling pathways involved in cancer. Luciferase reporter assay identified AKT2 as a novel target of miR-608, and suppression of its protein levels was validated through western blot analysis. Zebrafish embryos were microinjected with cells transfected with miR-608 to elucidate the role of miR-608 in vivo, and immunostained with antibodies to detect activated caspase-3. We present the first evidence that miR-608 behaves as a tumour suppressor in A549 and SK-LU-1 cells through the regulation of AKT2, suggesting that selective targeting of AKT2 via miR-608 may be developed as a potential therapeutic strategy for miRNA-based non-small cell lung cancer (NSCLC) therapy.