Arginine kinase-1 (MrAK-1) was sequenced from the freshwater prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrAK-1 consisted of 1068 bp nucleotide encoded 355 polypeptide with an estimated molecular mass of 40 kDa. MrAK-1 sequence contains a potential ATP:guanido phosphotransferases active domain site. The deduced amino acid sequence of MrAK-1 was compared with other 7 homologous arginine kinase (AK) and showed the highest identity (96%) with AK-1 from cherry shrimp Neocaridina denticulate. The qRT-PCR analysis revealed a broad expression of MrAK-1 with the highest expression in the muscle and the lowest in the eyestalk. The expression of MrAK-1 after challenge with the infectious hypodermal and hematopoietic necrosis virus (IHHNV) was tested in muscle. In addition, MrAK-1 was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The optimum temperature (30 °C) and pH (8.5) was determined for the enzyme activity assay. MrAK-1 showed significant (P < 0.05) activity towards 10-50 mM ATP concentration. The enzyme activity was inhibited by α-ketoglutarate, glucose and ATP at the concentration of 10, 50 and 100 mM respectively. Conclusively, the findings of this study indicated that MrAK-1 might play an important role in the coupling of energy production and utilization and the immune response in shrimps.
Tropomyosin and arginine kinase have been identified as the major allergens in multiple species of crab. Charybdis feriatus is an important commercial crab in this country.
Crab is an important source of food allergen. Tropomyosin represents the main crab allergen and is responsible for IgE cross-reactivity between various species of crustaceans. Recently, other new crab allergens including arginine kinase have been identified. However, information on allergens of the local Portunidcrab is not available. Thus, the aim of this study was to identify the major allergens of Portunus pelagicus (blue swimming crab) using the allergenomics approach. Raw and cooked extracts of the crab were prepared from the crab meat. Protein profile and IgE binding pattern were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using sera from 30 patients with crab allergy. The major allergens of the crab were then identified by two-dimensional electrophoresis (2-DE), followed by mass spectrometry analysis of the peptide digests. The SDS-PAGE of raw extract revealed approximately 20 protein fractions over a wide molecular weight range, while cooked extract demonstrated fewer protein bands. The raw extract also demonstrated a higher number of IgE reactive bands than the cooked extract. A heat-resistant protein of 36 kDa has been identified as the major allergen in both raw and cooked extracts. In addition, a heat-sensitive protein of 41 kDa was also recognized as a major allergen in raw crab. The 2-DE gel profile of the raw extract demonstrated about >100 distinct proteins spots and immunoblotting of the 2-DE profile demonstrated at least 12 different major IgE reactive spots with molecular masses between 13 to 250 kDa and isoelectric point (pI) values ranging from 4.0 to 7.0. The 36 and 41 kDa proteins were identified as the crab tropomyosin and arginine kinase, respectively by mass spectrometry. Therefore, this study confirmed that tropomyosin and arginine kinase are the major allergens of the local Portunid crab, P. pelagicus.
The purpose of this study was to evaluate the effect of different cooking methods on the allergenicity of cockle and to identify proteins most frequently bound by IgE antibodies using a proteomics approach. Raw, boiled, fried and roasted extracts of the cockle were prepared. The protein profiles of the extracts were obtained by separation using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional gel electrophoresis (2-DE). IgE-immunoblotting was then performed with the use of individual sera from patients with cockle allergy and the major IgE-binding proteins were analyzed by mass-spectrometry. SDS-PAGE of raw extract showed 13 protein bands. Smaller numbers of protein bands were detected in the boiled, fried and roasted extracts. The 2-DE gel profile of the raw extract further separated the protein bands to ~50 protein spots with molecular masses between 13 to 180 kDa and isoelectric point (pI) values ranging from 3 to 10. Immunoblotting of raw extract exhibited 11 IgE-binding proteins with two proteins of 36 and 40 kDa as the major IgE-binding proteins, while the boiled extract revealed 3 IgE-binding proteins. Fried and roasted extracts only showed a single IgE-binding protein at 36 kDa. 2-DE immunoblotting of raw extract demonstrated 5 to 20 IgE reactive spots. Mass spectrometry analysis led to identification of 2 important allergens, tropomyosin (36 kDa) and arginine kinase (40 kDa). Heated extracts showed a reduction in the number of IgE-reactive bands compared with raw extract, which suggest that thermal treatment can be used as a tool in attempting to reduce cockle allergenicity. The degree of allergenicity of cockle was demonstrated in the order raw > boiled > fried ≈ roasted. Two important allergens reacting with more than 50% of patients' sera identified using mass spectrometric approaches were tropomyosin and arginine kinase. Thus, allergens found in this study would help in component based diagnosis, management of cockle allergic patients and to the standardisation of allergenic test products as tools in molecular allergology.
Crab meat is widely consumed in several countries around the world. However, when consumed, crab meat are frequent cause of allergic reactions throughout the world. Scylla serrata is among the most common mud crab in Malaysia. In a previous study two major allergens of mud crab at 36 and 41 kDa was identified. Thus, the aim of this study is to further identify these major allergens by a proteomic approach. Protein extract was prepared and resolved by 2-dimensional electrophoresis (2-DE). Immunoblotting was then performed using reactive sera from patients with crab allergy. Major allergenic spots were then excised from the 2-DE gel and analysed by mass spectrometry. The 2-DE profile of the extract revealed approximately >100 protein spots between pH of 4.00 to 8.00. Mass spectrometry analysis has identified the 36 and 41 kDa proteins as tropomyosin and arginine kinase, respectively. Our findings indicated that tropomyosin and arginine kinase play a major role in allergic reaction to mud crab meat among local patients with crab meat allergy, and should be included in diagnostics and therapeutic strategies of this allergy.
Crab allergy is reported as a serious form of food allergy in many countries. This study was aimed to identify the major allergens of the local mud crab, Scylla tranquebarica (S. tranquebarica), and subsequently, determine the effect of vinegar treatments on the crab allergens. Crab muscles were treated with synthetic and natural vinegar. Crab proteins were then extracted from the untreated and vinegar-treated crabs. All extracts were then fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and analyzed by immunoblotting; using sera from crab-allergic patients. The crab proteins were then further fractionated by two-dimensional electrophoresis (2-DE)and analyzed by mass spectrometry (MS). The untreated crab had 38 protein bands, while that was only a few bands between 18 to 73 kDa for the vinegar-treated crabs. Immunoblotting of untreated crab revealed 20 IgE-binding bands, whereas the vinegar-treated crabs could only retain a few IgE-binding bands. Five major allergens were identified with molecular weightsof38, 42, 49, 63, and 73 kDa in the untreated crab. In contrast, the vinegar-treated crabs had only a few major allergens with molecular weights of 38, 42, and 73 kDa. MS identified the 43 and 49 kDa as arginine kinase, while the 38, 63, and 73 kDa were identified as tropomyosin, actin, and hemocyanin, respectively. Inconclusion, we found three common major allergens for S. tranquebarica including tropomyosin, arginine kinase, and actin, and one novel allergen known as hemocyanin. All the major allergens could retain minimal allergenic capability in vinegar-treated crabs, suggesting that vinegar treatments might be useful to reduce crab allergenicity. These data would assist the clinicians in the management of crab-allergic patients worldwide.
The study was aimed to investigate the expression of cytosolic and thiolated proteins of Musca domestica larvae under oxidative stress. Proteins from acute treatment of hydrogen peroxide (LC50 = 21.52% (v/v)) on 3rd stage larvae of housefly were extracted and purified using an activated Thiol Sepharose® for thiolated protein purification. Two dimensional gel electrophoresis was used for visualizing and analyzing expression of cytosolic and thiolated proteins. Protein spots with more than 5 fold of expression change were identified using liquid chromatography- tandem mass spectrometry (LC-MS/MS). The cytosolic proteins were actin, tropomyosin, ubiquitin, arginine kinase, pheromone binding protein/general odorant binding protein, and ATP: guanidino phosphotransferase. The thiolated proteins with more than 5 fold change in expression as an effect to the acute treatment were fructose bisphosphate aldolase, short chain dehydrogenase and lactate/malate dehydrogenase. The proteins identified in the study should provide vital information for future reference in oxidative stress defence and response occurring in houseflies.
Crab meat is a valuable source of proteins and functional lipids and it is widely consumed worldwide. However, the prevalence of crab allergy has increased over the past few years. In order to understand crab allergy better, it is necessary to identify crab allergens. The aim of the present study was to compare the IgE-binding proteins of raw and cooked extracts of mud crab (Scylla serrata). Raw and cooked extracts of the mud crab were prepared. Protein profiles and IgE reactivity patterns were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunoblotting using sera from 21 skin prick test (SPT) positive patients. In SDS-PAGE, 20 protein bands (12 to 250 kDa) were observed in the raw extract while the cooked extract demonstrated fewer bands. Protein bands between 40 to 250 kDa were sensitive to heat denaturation and no longer observed in the cooked extract. In immunoblotting experiments, raw and cooked extracts demonstrated 11 and 4 IgE-binding proteins, respectively, with molecular weights of between 23 and 250 kDa. A heat-resistant 36 kDa protein, corresponding to crab tropomyosin was identified as the major allergen of both extracts. In addition, a 41 kDa heat-sensitive protein believed to be arginine kinase was shown to be a major allergen of the raw extract. Other minor allergens were also observed at various molecular weights.
Allergy caused by food is usually type 1 allergy of four types of allergic reactions. One of the most widespread allergic is those that are caused by crustacean shellfish. Crustaceans are classified among arthropods which include crab, crayfish, lobster, prawn and shrimp. Shrimp which are broadly consumed as nutritional food is one of the most important food that contribute to allergy. Thus, reducing the allergenicity of shrimp allergen will be helpful to individuals who are sensitive to shrimp and for this reason the characteristics of each allergen need to be studied. Those sensitized individuals can develop urticaria, angiodema, laryngospasm, asthma and life threatening anaphylaxis. To date, four main allergens contribute to allergic reactions. They are tropomyosin (TM), a highly conserved and heat stable myofibrillar protein of 35-38 kDa followed by arginine kinase (AK) which is also known as Pen m 2 or Lit v 2 with 40 kDa. Two other contributing allergens are sarcoplasmic calcium-binding protein (SCP) also known as Lit v 4 with 22 kDa and myosin light chain (MLC) which is also termed as Lit v 3 with 20 kDa. This mini-review will provide a better understanding of each allergen derived from shrimp which subsequently will help to reduce the allergenicity.
BACKGROUND: Prawns and shrimp are a frequent cause of seafood allergy mediated by IgE antibodies. Penaeus monodon and Penaeus latisulcatus, commonly known as black tiger prawn and king prawn, respectively, are among the most frequently consumed prawns in Malaysia. The aim of this study was to identify the IgE-binding proteins of these 2 prawn species.
METHODS: Raw and boiled prawn extracts were prepared and then resolved by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). IgE-immunoblotting was then performed using sera from patients with positive skin prick tests to the raw prawn extracts.
RESULTS: SDS-PAGE analysis of the raw extracts of both prawn species revealed 23 protein bands; the boiled extracts yielded fewer protein bands. The bands in the range of 40 to 100 kDa were sensitive to heat and therefore were not found in the boiled extracts. Immunoblot of raw extracts of black tiger prawns and king prawns yielded 14 and 11 IgE-binding proteins, respectively, with molecular weights of between 15 and 200 kDa. Proteins at 36, 42, and 49 kDa were detected as the major allergens in both species of prawns. A protein of 75 kDa was also identified as a major allergen in black tiger prawns. Other potential allergens were also observed at various molecular masses.
CONCLUSION: Proteins of 36, 42, and 49 kDa were identified as the major allergens of both species of prawns. The 36 and 42 kDa proteins are hypothesised to be tropomyosin and arginine kinase, respectively. A high molecular weight protein of 75 kDa was found to be an additional major allergen in black tiger prawns.
KEYWORDS: Penaeus; allergens; allergy and clinical immunology; hypersensitivity; immunoblotting; tropomyosin