Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Rasidi WNA, Seluakumaran K
    Int J Audiol, 2024 May;63(5):326-333.
    PMID: 37073634 DOI: 10.1080/14992027.2023.2197146
    OBJECTIVE: The ear's spectral resolution or frequency selectivity (FS) is a fundamental aspect of hearing but is not routinely measured in clinical practice. This study evaluated a simplified FS testing procedure for clinical use by replacing the time-consuming two-interval forced choice (2IFC) method with method of limits (MOL) carried out using a custom-made software and consumer-grade equipment.

    DESIGN AND STUDY SAMPLE: Study 1 compared the FS measure obtained with MOL and 2IFC procedure at two centre frequencies (CFs) (1 and 4 kHz) in 21 normal-hearing listeners. Study 2 determined the FS measure using MOL at five CFs (0.5-8 kHz) in 32 normal-hearing and nine sensorineural hearing loss listeners and compared them with their thresholds in quiet.

    RESULTS: FS measurements with MOL and 2IFC methods were highly correlated and had statistically comparable intra-subject test-retest reliability. FS measures determined with MOL were reduced in the hearing-impaired compared to normal-hearing listeners at the CF corresponding to their hearing loss. Linear regression analysis showed significant relationship between FS deterioration and quiet threshold loss (p 

    Matched MeSH terms: Auditory Threshold*
  2. Woei TJ, Mazlan R, Tamil AM, Rosli NSM, Hasbi SM, Hashim ND, et al.
    Int Tinnitus J, 2023 Dec 04;27(1):75-81.
    PMID: 38050889 DOI: 10.5935/0946-5448.20230013
    OBJECTIVE: The purpose of this study was to compare the reliability and accuracy of chirp-based Multiple Auditory Steady State Response (MSSR) and Auditory Brainstem Response (ABR) in children.

    METHODS: The prospective clinical study was conducted at Selayang Hospital (SH) and Hospital Canselor Tuanku Muhriz (HCTM) within one year. A total of 38 children ranging from 3 to 18 years old underwent hearing evaluation using ABR tests and MSSR under sedation. The duration of both tests were then compared.

    RESULTS: The estimated hearing threshold of frequency specific chirp MSSR showed good correlation with ABR especially in higher frequencies such as 2000 Hz and 4000Hz with the value of cronbach alpha of 0.890, 0.933, 0.970 and 0.969 on 500Hz, 1000Hz, 2000Hz and 4000Hz. The sensitivity of MSSR is 0.786, 0.75, 0.957 and 0.889 and specificity is 0.85, 0.882, 0.979 and 0.966 over 500Hz, 1000Hz, 2000Hz and 4000Hz. The duration of MSSR tests were shorter than ABR tests in normal hearing children with an average of 35.3 minutes for MSSR tests and 46.4 minutes for ABR tests. This can also be seen in children with hearing loss where the average duration for MSSR tests is 40.0 minutes and 52.0 minutes for ABR tests.

    CONCLUSION: MSSR showed good correlation and reliability in comparison with ABR especially on higher frequencies. Hence, MSSR is a good clinical test to diagnose children with hearing loss.

    Matched MeSH terms: Auditory Threshold/physiology
  3. Zakaria MN, Ensin EG, Awang MA, Salim R, Nik Othman NA, Rashid MFN
    Med J Malaysia, 2023 Dec;78(7):901-906.
    PMID: 38159926
    INTRODUCTION: The sensorineural acuity level (SAL) test was developed as an alternative assessment to estimate bone conduction (BC) thresholds in cases where masking problems occur in pure tone audiometry (PTA). Nevertheless, prior to its clinical application, the respective SAL normative data must be made available. As such, the present study was carried out to establish SAL normative data using an insert earphone and two different commercially available bone transducers. Additionally, to determine the effect of earphone type on SAL test results, it was also of interest to compare the present study's findings with those of a previous study (that used a headphone to derive SAL normative data).

    MATERIALS AND METHODS: In this repeated-measures study, 40 Malaysian adults (aged 19-26 years) with normal hearing bilaterally (based on PTA results) were enrolled. They then underwent the SAL test based on the recommended protocol by Jerger and Tillman (1960). The SAL normative data for each ear were obtained by calculating the differences between air conduction (AC) thresholds in quiet and AC thresholds in noise by means of insert earphone, B71 and B81 bone vibrators.

    RESULTS: The SAL normative values were comparable between the ears (p > 0.05), and the data were pooled for subsequent analyses (n = 80 ears). Relative to B81 bone transducer, B71 bone vibrator produced statistically higher SAL normative data at all frequencies (p < 0.05). The SAL normative values established by the present study were statistically lower than those of the previous study (that utilised headphones) at most of frequencies tested (p < 0.05).

    CONCLUSIONS: The SAL normative data produced by the two bone vibrators were significantly different. The SAL normative values were also affected by the type of earphone used. While conducting the SAL test on Malaysian patients, the information provided by this study can be useful to guide the respective clinicians in choosing the appropriate normative data.

    Matched MeSH terms: Auditory Threshold
  4. Rasidi WNA, Seluakumaran K, Jamaluddin SA
    Eur Arch Otorhinolaryngol, 2023 Oct;280(10):4391-4400.
    PMID: 36988687 DOI: 10.1007/s00405-023-07929-7
    PURPOSE: Pure-tone audiometry (PTA) is the gold standard for screening and diagnosis of hearing loss but is not always accessible. This study evaluated a simplified cochlear frequency selectivity (FS) measure as an alternative option to screen for early frequency-specific sensorineural hearing loss (SNHL).

    METHODS: FS measures at 1 and 4 kHz center frequencies were obtained using a custom-made software in normal-hearing (NH), slight SNHL and mild-to-moderate SNHL subjects. For comparison, subjects were also assessed with the Malay Digit Triplet Test (DTT) and the shortened Malay Speech, Spatial and Qualities of Hearing Scale (SSQ) questionnaire.

    RESULTS: Compared to DTT and SSQ, the FS measure at 4 kHz was able to distinguish NH from slight and mild-to-moderate SNHL subjects, and was strongly correlated with their thresholds in quiet determined separately in 1-dB step sizes at the similar test frequency. Further analysis with receiver operating characteristic (ROC) curves indicated area under the curve (AUC) of 0.77 and 0.83 for the FS measure at 4 kHz when PTA thresholds of NH subjects were taken as ≤ 15 dB HL and ≤ 20 dB HL, respectively. At the optimal FS cut-off point for 4 kHz, the FS measure had 77.8% sensitivity and 86.7% specificity to detect 20 dB HL hearing loss.

    CONCLUSION: FS measure was superior to DTT and SSQ questionnaire in detecting early frequency-specific threshold shifts in SNHL subjects, particularly at 4 kHz. This method could be used for screening subjects at risk of noise-induced hearing loss.

    Matched MeSH terms: Auditory Threshold
  5. Seluakumaran K, Shaharudin MN
    Int J Audiol, 2022 Oct;61(10):850-858.
    PMID: 34455907 DOI: 10.1080/14992027.2021.1969455
    OBJECTIVE: To undertake calibration and preliminary validation of a custom-designed computer-based screening audiometer connected to consumer insert phone-earmuff combination for adult pure tone audiometry.

    DESIGN: Part 1 involved electroacoustic measurement and biological calibration of a laptop-earphone pair used for the computer-based audiometry (CBA). Part 2 compared CBA thresholds obtained without a sound booth with those measured using the gold-standard clinical audiometry.

    STUDY SAMPLE: 17 young normal-hearing volunteers (Part 1) and 43 normal and hearing loss subjects (Part 2) recruited from an audiology clinic via convenience sampling.

    RESULTS: The transducer-device combination produced outputs suitable for measuring thresholds down to 0 dB HL. Threshold pairs obtained from the CBA and clinical audiometry were highly correlated (Spearman's correlation coefficient, ρ = 0.92, p 25 dB HL.

    CONCLUSIONS: The use of a computer-based audiometer application with consumer insert phone-earmuff combination can offer a cost-effective solution for boothless screening audiometry.

    Matched MeSH terms: Auditory Threshold
  6. Reeves A, Seluakumaran K, Scharf B
    J Acoust Soc Am, 2021 05;149(5):3352.
    PMID: 34241123 DOI: 10.1121/10.0004786
    A contralateral "cue" tone presented in continuous broadband noise both lowers the threshold of a signal tone by guiding attention to it and raises its threshold by interference. Here, signal tones were fixed in duration (40 ms, 52 ms with ramps), frequency (1500 Hz), timing, and level, so attention did not need guidance. Interference by contralateral cues was studied in relation to cue-signal proximity, cue-signal temporal overlap, and cue-signal order (cue after: backward interference, BI; or cue first: forward interference, FI). Cues, also ramped, were 12 dB above the signal level. Long cues (300 or 600 ms) raised thresholds by 5.3 dB when the signal and cue overlapped and by 5.1 dB in FI and 3.2 dB in BI when cues and signals were separated by 40 ms. Short cues (40 ms) raised thresholds by 4.5 dB in FI and 4.0 dB in BI for separations of 7 to 40 ms, but by ∼13 dB when simultaneous and in phase. FI and BI are comparable in magnitude and hardly increase when the signal is close in time to abrupt cue transients. These results do not support the notion that masking of the signal is due to the contralateral cue onset/offset transient response. Instead, sluggish attention or temporal integration may explain contralateral proximal interference.
    Matched MeSH terms: Auditory Threshold
  7. Jamal FN, Arafat Dzulkarnain AA, Shahrudin FA, Marzuki MN
    J Audiol Otol, 2021 Jan;25(1):14-21.
    PMID: 32575950 DOI: 10.7874/jao.2020.00073
    BACKGROUND AND OBJECTIVES: There is growing interest in the use of the Level-specific (LS) CE-Chirp® stimulus in auditory brainstem response (ABR) due to its ability to produce prominent ABR waves with robust amplitudes. There are no known studies that investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus. The present study aims to investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus and compare its reliability with the ABR to standard click stimulus at multiple intensity levels in normal-hearing adults.

    SUBJECTS AND METHODS: Eleven normal-hearing adults participated. The ABR test was repeated twice in the same clinical session and conducted again in another session. The ABR was acquired using both the click and LS CE-Chirp® stimuli at 4 presentation levels (80, 60, 40, and 20 dBnHL). Only the right ear was tested using the ipsilateral electrode montage. The reliability of the ABR findings (amplitudes and latencies) to the click and LS CE-Chirp® stimuli within the same clinical session and between the two clinical sessions was calculated using an intra-class correlation coefficient analysis (ICC).

    RESULTS: The results showed a significant correlation of the ABR findings (amplitude and latencies) to both stimuli within the same session and between the clinical sessions. The ICC values ranged from moderate to excellent.

    CONCLUSIONS: The ABR results from both the LS CE-Chirp® and click stimuli were consistent and reliable over the two clinical sessions suggesting that both stimuli can be used for neurological diagnoses with the same reliability.

    Matched MeSH terms: Auditory Threshold
  8. Dzulkarnain AAA, Shahrudin FA, Jamal FN, Marzuki MN, Mazlan MNS
    Am J Audiol, 2020 Dec 09;29(4):838-850.
    PMID: 32966099 DOI: 10.1044/2020_AJA-20-00049
    Purpose The purpose of this study is to investigate the influence of stimulus repetition rates on the auditory brainstem response (ABR) to Level-Specific (LS) CE-Chirp and click stimuli at multiple intensity levels in normal-hearing adults. Method A repeated-measure study design was used on 13 normal-hearing adults. ABRs were acquired from the study participants using LS CE-Chirp and click stimuli at four stimulus repetition rates (19.1, 33.3, 61.1, and 81.1 Hz) and four intensity levels (80, 60, 40, and 20 dB nHL). The ABR test was stopped at 40-nV residual noise level. Results High-stimulus repetition rates caused the ABR latencies to be longer and have reduced amplitudes in both ABR to LS CE-Chirp and click stimuli. The ABR to LS CE-Chirp Wave I, III, and V amplitudes were larger than ABR to click in almost all the stimulus repetition rates. However, there were no differences in the number of averages required to reach the stopping criterion between ABR to LS CE-Chirp and click stimulus, and between high-stimulus repetition rates and low-stimulus repetition rates. Conclusion The LS CE-Chirp at standard low-stimulus repetition rates can be used to elicit ABR for both neurodiagnostic and threshold seeking procedure.
    Matched MeSH terms: Auditory Threshold
  9. Dewey RS, Francis ST, Guest H, Prendergast G, Millman RE, Plack CJ, et al.
    Neuroimage, 2020 01 01;204:116239.
    PMID: 31586673 DOI: 10.1016/j.neuroimage.2019.116239
    In animal models, exposure to high noise levels can cause permanent damage to hair-cell synapses (cochlear synaptopathy) for high-threshold auditory nerve fibers without affecting sensitivity to quiet sounds. This has been confirmed in several mammalian species, but the hypothesis that lifetime noise exposure affects auditory function in humans with normal audiometric thresholds remains unconfirmed and current evidence from human electrophysiology is contradictory. Here we report the auditory brainstem response (ABR), and both transient (stimulus onset and offset) and sustained functional magnetic resonance imaging (fMRI) responses throughout the human central auditory pathway across lifetime noise exposure. Healthy young individuals aged 25-40 years were recruited into high (n = 32) and low (n = 30) lifetime noise exposure groups, stratified for age, and balanced for audiometric threshold up to 16 kHz fMRI demonstrated robust broadband noise-related activity throughout the auditory pathway (cochlear nucleus, superior olivary complex, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body and auditory cortex). fMRI responses in the auditory pathway to broadband noise onset were significantly enhanced in the high noise exposure group relative to the low exposure group, differences in sustained fMRI responses did not reach significance, and no significant group differences were found in the click-evoked ABR. Exploratory analyses found no significant relationships between the neural responses and self-reported tinnitus or reduced sound-level tolerance (symptoms associated with synaptopathy). In summary, although a small effect, these fMRI results suggest that lifetime noise exposure may be associated with central hyperactivity in young adults with normal hearing thresholds.
    Matched MeSH terms: Auditory Threshold/physiology*
  10. Mukari SZMS, Yusof Y, Ishak WS, Maamor N, Chellapan K, Dzulkifli MA
    Braz J Otorhinolaryngol, 2018 12 10;86(2):149-156.
    PMID: 30558985 DOI: 10.1016/j.bjorl.2018.10.010
    INTRODUCTION: Hearing acuity, central auditory processing and cognition contribute to the speech recognition difficulty experienced by older adults. Therefore, quantifying the contribution of these factors on speech recognition problem is important in order to formulate a holistic and effective rehabilitation.

    OBJECTIVE: To examine the relative contributions of auditory functioning and cognition status to speech recognition in quiet and in noise.

    METHODS: We measured speech recognition in quiet and in composite noise using the Malay Hearing in noise test on 72 native Malay speakers (60-82 years) older adults with normal to mild hearing loss. Auditory function included pure tone audiogram, gaps-in-noise, and dichotic digit tests. Cognitive function was assessed using the Malay Montreal cognitive assessment.

    RESULTS: Linear regression analyses using backward elimination technique revealed that had the better ear four frequency average (0.5-4kHz) (4FA), high frequency average and Malay Montreal cognitive assessment attributed to speech perception in quiet (total r2=0.499). On the other hand, high frequency average, Malay Montreal cognitive assessment and dichotic digit tests contributed significantly to speech recognition in noise (total r2=0.307). Whereas the better ear high frequency average primarily measured the speech recognition in quiet, the speech recognition in noise was mainly measured by cognitive function.

    CONCLUSIONS: These findings highlight the fact that besides hearing sensitivity, cognition plays an important role in speech recognition ability among older adults, especially in noisy environments. Therefore, in addition to hearing aids, rehabilitation, which trains cognition, may have a role in improving speech recognition in noise ability of older adults.

    Matched MeSH terms: Auditory Threshold/physiology*
  11. Ho EC, Ong WMW, Li K, Zhang H, Bei YTE, Medapati SVR, et al.
    Int J Audiol, 2018 10;57(10):776-783.
    PMID: 29957077 DOI: 10.1080/14992027.2018.1476781
    OBJECTIVE: To examine the factors associated with late presentation at first hearing aid (HA) fitting, HA choice and usage among users in Singapore.

    DESIGN: Retrospective cross-sectional study.

    STUDY SAMPLE: 1068 subjects issued with HAs at a tertiary hospital from 2001 to 2013.

    RESULTS: Half of the subjects presented with more severe (>55 dB) hearing loss (HL) in their better ear. In multivariable analysis, older age, Malay ethnicity, conductive and mixed HL, and combination type of HL were associated with more severe HL at first presentation. Over 70% of subjects were older than 65 years. Worse pure tone audiometry (PTA) thresholds of the better ear, gradual onset and sensorineural HL were associated with older age presentation. For unilaterally fitted subjects, PTA thresholds were the only determinant of having the better ear aided. Better PTA thresholds, younger age and sensorineural HL were associated with choosing in ear compared to behind the ear HAs. Younger age and worse PTA of the better ear were associated with ≥4 h of daily HA usage.

    CONCLUSIONS: Age, ethnicity and type of HL were important determinants for more severe HL at first HA fitting. Older patients and those with better hearing were less likely to use their HAs regularly.

    Matched MeSH terms: Auditory Threshold*
  12. Dzulkarnain AAA, Abdullah SA, Ruzai MAM, Ibrahim SHMN, Anuar NFA, Rahim 'EA
    Am J Audiol, 2018 Sep 12;27(3):294-305.
    PMID: 30054628 DOI: 10.1044/2018_AJA-17-0087
    Purpose: The purpose of this study was to investigate the influence of 2 different electrode montages (ipsilateral and vertical) on the auditory brainstem response (ABR) findings elicited from narrow band (NB) level-specific (LS) CE-Chirp and tone-burst in subjects with normal hearing at several intensity levels and frequency combinations.

    Method: Quasi-experimental and repeated-measures study designs were used in this study. Twenty-six adults with normal hearing (17 females, 9 males) participated. ABRs were acquired from the study participants at 3 intensity levels (80, 60, and 40 dB nHL), 3 frequencies (500, 1000, and 2000 Hz), 2 electrode montages (ipsilateral and vertical), and 2 stimuli (NB LS CE-Chirp and tone-burst) using 2 stopping criteria (fixed averages at 4,000 sweeps and F test at multiple points = 3.1).

    Results: Wave V amplitudes were only 19%-26% larger for the vertical recordings than the ipsilateral recordings in both the ABRs obtained from the NB LS CE-Chirp and tone-burst stimuli. The mean differences in the F test at multiple points values and the residual noise levels between the ABRs obtained from the vertical and ipsilateral montages were statistically not significant. In addition, the ABR elicited from the NB LS CE-Chirp was significantly larger (up to 69%) than those from the tone-burst, except at the lower intensity level.

    Conclusion: Both the ipsilateral and vertical montages can be used to record ABR to the NB LS CE-Chirp because of the small enhancement in the wave V amplitude provided by the vertical montage.

    Matched MeSH terms: Auditory Threshold/physiology*
  13. Zakaria MN, Abdul Wahab NA, Awang MA
    Noise Health, 2017 12 2;19(87):112-113.
    PMID: 29192621 DOI: 10.4103/nah.NAH_2_17
    Matched MeSH terms: Auditory Threshold
  14. Abdelatti ZAS, Hartbauer M
    Hear Res, 2017 11;355:70-80.
    PMID: 28974384 DOI: 10.1016/j.heares.2017.09.011
    In forest clearings of the Malaysian rainforest, chirping and trilling Mecopoda species often live in sympatry. We investigated whether a phenomenon known as stochastic resonance (SR) improved the ability of individuals to detect a low-frequent signal component typical of chirps when members of the heterospecific trilling species were simultaneously active. This phenomenon may explain the fact that the chirping species upholds entrainment to the conspecific song in the presence of the trill. Therefore, we evaluated the response probability of an ascending auditory neuron (TN-1) in individuals of the chirping Mecopoda species to triple-pulsed 2, 8 and 20 kHz signals that were broadcast 1 dB below the hearing threshold while increasing the intensity of either white noise or a typical triller song. Our results demonstrate the existence of SR over a rather broad range of signal-to-noise ratios (SNRs) of input signals when periodic 2 kHz and 20 kHz signals were presented at the same time as white noise. Using the chirp-specific 2 kHz signal as a stimulus, the maximum TN-1 response probability frequently exceeded the 50% threshold if the trill was broadcast simultaneously. Playback of an 8 kHz signal, a common frequency band component of the trill, yielded a similar result. Nevertheless, using the trill as a masker, the signal-related TN-1 spiking probability was rather variable. The variability on an individual level resulted from correlations between the phase relationship of the signal and syllables of the trill. For the first time, these results demonstrate the existence of SR in acoustically-communicating insects and suggest that the calling song of heterospecifics may facilitate the detection of a subthreshold signal component in certain situations. The results of the simulation of sound propagation in a computer model suggest a wide range of sender-receiver distances in which the triller can help to improve the detection of subthreshold signals in the chirping species.
    Matched MeSH terms: Auditory Threshold
  15. Dzulkarnain AAA, Noor Ibrahim SHM, Anuar NFA, Abdullah SA, Tengku Zam Zam TZH, Rahmat S, et al.
    Int J Audiol, 2017 Oct;56(10):723-732.
    PMID: 28415891 DOI: 10.1080/14992027.2017.1313462
    OBJECTIVE: To investigate the influence of two different electrode montages (ipsilateral: reference to mastoid and vertical: reference to nape of neck) to the ABR results recorded using a level-specific (LS)-CE-Chirp® in normally hearing subjects at multiple intensities levels.

    DESIGN: Quasi-experimental and repeated measure study designs were applied in this study. Two different stopping criteria were used, (1) a fixed-signal averaging 4000 sweeps and, (2) a minimum quality indicator of Fmp = 3.1 with a minimum of 800 sweeps.

    STUDY SAMPLE: Twenty-nine normally hearing adults (18 females, 11 male) participated.

    RESULTS: Wave V amplitudes were significantly larger in the LS CE-Chirp® recorded from the vertical montage than the ipsilateral montage. Waves I and III amplitudes were significantly larger from the ipsilateral LS CE-Chirp® than from the other montages and stimulus combinations. The differences in the quality of the ABR recording between the vertical and ipsilateral montages were marginal.

    CONCLUSIONS: Overall, the result suggested that the vertical LS CE-Chirp® ABR had a high potential for a threshold-seeking application, because it produced a higher wave V amplitude. The Ipsilateral LS CE-Chirp® ABR, on the other hand, might also have a high potential for the site of lesion application, because it produced larger waves I and III amplitudes.

    Matched MeSH terms: Auditory Threshold
  16. Quar TK, Soli SD, Chan YF, Ishak WS, Abdul Wahat NH
    Int J Audiol, 2017 02;56(2):92-98.
    PMID: 27686009 DOI: 10.1080/14992027.2016.1210828
    OBJECTIVE: This study was conducted to evaluate the speech perception of Malaysian Chinese adults using the Taiwanese Mandarin HINT (MHINT-T) and the Malay HINT (MyHINT).

    DESIGN: The MHINT-T and the MyHINT were presented in quiet and noise (front, right and left) conditions under headphones. Results for the two tests were compared with each other and with the norms for each test.

    STUDY SAMPLE: Malaysian Chinese native speakers of Mandarin (N = 58), 18-31 years of age with normal hearing.

    RESULTS: On average, subjects demonstrated poorer speech perception ability than the normative samples for these tests. Repeated measures ANOVA showed that speech reception thresholds (SRTs) were slightly poorer on the MHINT-T than on the MyHINT for all test conditions. However, normalized SRTs were poorer by 0.6 standard deviations for MyHINT as compared with MHINT-T.

    CONCLUSIONS: MyHINT and MHINT-T can be used as norm-referenced speech perception measures for Mandarin-speaking Chinese in Malaysia.

    Matched MeSH terms: Auditory Threshold
  17. Jalaei B, Shaabani M, Zakaria MN
    Braz J Otorhinolaryngol, 2017 Jan-Feb;83(1):10-15.
    PMID: 27102175 DOI: 10.1016/j.bjorl.2015.12.005
    INTRODUCTION: The performance of auditory steady state response (ASSR) in threshold testing when recorded ipsilaterally and contralaterally, as well as at low and high modulation frequencies (MFs), has not been systematically studied.

    OBJECTIVE: To verify the influences of mode of recording (ipsilateral vs. contralateral) and modulation frequency (40Hz vs. 90Hz) on ASSR thresholds.

    METHODS: Fifteen female and 14 male subjects (aged 18-30 years) with normal hearing bilaterally were studied. Narrow-band CE-chirp(®) stimuli (centerd at 500, 1000, 2000, and 4000Hz) modulated at 40 and 90Hz MFs were presented to the participants' right ear. The ASSR thresholds were then recorded at each test frequency in both ipsilateral and contralateral channels.

    RESULTS: Due to pronounced interaction effects between mode of recording and MF (p<0.05 by two-way repeated measures ANOVA), mean ASSR thresholds were then compared among four conditions (ipsi-40Hz, ipsi-90Hz, contra-40Hz, and contra-90Hz) using one-way repeated measures ANOVA. At the 500 and 1000Hz test frequencies, contra-40Hz condition produced the lowest mean ASSR thresholds. In contrast, at high frequencies (2000 and 4000Hz), ipsi-90Hz condition revealed the lowest mean ASSR thresholds. At most test frequencies, contra-90Hz produced the highest mean ASSR thresholds.

    CONCLUSIONS: Based on the findings, the present study recommends two different protocols for an optimum threshold testing with ASSR, at least when testing young adults. This includes the use of contra-40Hz recording mode due to its promising performance in hearing threshold estimation.
    Matched MeSH terms: Auditory Threshold/physiology*
  18. Zakaria MN, Jalaei B, Wahab NA
    Eur Arch Otorhinolaryngol, 2016 Feb;273(2):349-54.
    PMID: 25682179 DOI: 10.1007/s00405-015-3555-3
    For estimating behavioral hearing thresholds, auditory steady state response (ASSR) can be reliably evoked by stimuli at low and high modulation frequencies (MFs). In this regard, little is known regarding ASSR thresholds evoked by stimuli at different MFs in female and male participants. In fact, recent data suggest that 40-Hz ASSR is influenced by estrogen level in females. Hence, the aim of the present study was to determine the effect of gender and MF on ASSR thresholds in young adults. Twenty-eight normally hearing participants (14 males and 14 females) were enrolled in this study. For each subject, ASSR thresholds were recorded with narrow-band chirps at 500, 1,000, 2,000, and 4,000 Hz carrier frequencies (CFs) and at 40 and 90 Hz MFs. Two-way mixed ANOVA (with gender and MF as the factors) revealed no significant interaction effect between factors at all CFs (p > 0.05). The gender effect was only significant at 500 Hz CF (p < 0.05). At 500 and 1,000 Hz CFs, mean ASSR thresholds were significantly lower at 40 Hz MF than at 90 Hz MF (p < 0.05). Interestingly, at 2,000 and 4,000 Hz CFs, mean ASSR thresholds were significantly lower at 90 Hz MF than at 40 Hz MF (p < 0.05). The lower ASSR thresholds in females might be due to hormonal influence. When recording ASSR thresholds at low MF, we suggest the use of gender-specific normative data so that more valid comparisons can be made, particularly at 500 Hz CF.
    Matched MeSH terms: Auditory Threshold/physiology*
  19. Hossain ME, Jassim WA, Zilany MS
    PLoS One, 2016;11(3):e0150415.
    PMID: 26967160 DOI: 10.1371/journal.pone.0150415
    Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants.
    Matched MeSH terms: Auditory Threshold
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links