Antibiotic resistance (AR) remains one of the leading global health challenges, mostly implicated in disease-related deaths. The Enterobacteriaceae-producing metallo-β-lactamases (MBLs) are critically involved in AR pathogenesis through Zn-dependent catalytic destruction of β-lactam antibiotics, yet with limited successful clinical inhibitors. The efficacy of relevant broad-spectrum β-lactams including imipenem and meropenem are seriously challenged by their susceptibility to the Zn-dependent carbapenemase hydrolysis, as such, searching for alternatives remains imperative. In this study, computational molecular modelling and virtual screening methods were extensively applied to identify new putative Zn-sensitive broad-spectrum inhibitors of MBLs, specifically imipenemase-1 (IMP-1) from the IBScreen database. Three ligands, STOCK3S-30154, STOCK3S-30418 and STOCK3S-30514 selectively displayed stronger binding interactions with the enzymes compared to reference inhibitors, imipenem and meropenem. For instance, the ligands showed molecular docking scores of -9.450, -8.005 and -10.159 kcal/mol, and MM-GBSA values of -40.404, -31.902 and -33.680 kcal/mol respectively against the IMP-1. Whereas, imipenem and meropenem showed docking scores of -9.038 and -10.875 kcal/mol, and MM-GBSA of -31.184 and -32.330 kcal/mol respectively against the enzyme. The ligands demonstrated good thermodynamic stability and compactness in complexes with IMP-1 throughout the 100 ns molecular dynamics (MD) trajectories. Interestingly, their binding affinities and stabilities were significantly affected in contacts with the remodelled Zn-deficient IMP-1, indicating sensitivity to the carbapenemase active Zn site, however, with non-β-lactam scaffolds, tenable to resist catalytic hydrolysis. They displayed ideal drug-like ADMET properties, thus, representing putative Zn-sensitive non-β-lactam inhibitors of IMP-1 amenable for further experimental studies.
The effectiveness of β-lactam antibiotics as chemotherapeutic agents to treat bacterial infections is gradually threatened with the emergence of antibiotic resistance mechanism among pathogenic bacteria through the production metallo-β-lactamase (MBL). In this study, we discovered a novel hypothetical protein (HP) termed Bleg1_2437 from the genome of alkaliphilic Bacillus lehensis G1 which exhibited MBL-like properties of B3 subclass; but evolutionary divergent from other circulating B3 MBLs. Domain and sequence analysis of HP Bleg1_2437 revealed that it contains highly conserved Zn2+-binding residues such as H54, H56, D58, H59, H131 and H191, important for catalysis, similar with the subclass B3 of MBL. Built 3-D Bleg1_2437 structure exhibited an αββα sandwich layer similar to the well-conserved global topology of MBL superfamily. Other features include a ceiling and floor in the model which are important for accommodation and orientation of β-lactam antibiotics docked to the protein model showed interactions at varying degrees with residues in the binding pocket of Bleg1_2437. Hydrolysis activity towards several β-lactam antibiotics was proven through an in vitro assay using purified recombinant Bleg1_2437 protein. These findings highlight the presence of a clinically important and evolutionary divergent antibiotics-degrading enzyme within the pools of uncharacterized HPs.
The emergence of beta lactamase producing bacterial strains eliminated the use of beta lactam antibiotics as chemotherapeutic alternative. Beta lactam antibiotics can be coupled with non-antibiotic adjuvants to combat these multidrug resistant strains. We study the synergistic antibiotic effect of stigmasterol as adjuvant of ampicillin against clinical isolates. Ampicillin was used in this study as a beta lactam antibiotic model. All test bacteria were beta lactamase producing clinical isolates. The combination showed significantly better antibiotic activity on all bacteria tested. The two test substances have synergistic antibiotic activity, and the effect was observed in both Gram positive and Gram negative bacteria. The synergistic antibiotic effect of stigmasterol and ampicillin was evident by the low fractional inhibitory concentration (FIC) index on Checkerboard Assay. The results suggest that the combination of ampicillin and stigmasterol acts additively in the treatment of infections caused by beta-lactamase producing pathogens. In bacterial growth reduction assay, ampicillin and stigmasterol alone exhibited very weak inhibitory effect on the bacterial growth, relative to ethanol control. Comparatively, combination of stigmasterol-ampicillin greatly reduced the colony counts at least by 98.7%. In conclusion, we found synergistic effects of stigmasterol and ampicillin against beta lactamase producing clinical isolates. This finding is important as it shows potential application of stigmasterol as an antibiotic adjuvant.
Previously, a hypothetical protein (HP) termed Bleg1_2437 (currently named Bleg1_2478) from Bacillus lehensis G1 was discovered to be an evolutionary divergent B3 subclass metallo-β-lactamase (MBL). Due to the scarcity of clinical inhibitors for B3 MBLs and the divergent nature of Bleg1_2478, this study aimed to design and characterise peptides as inhibitors against Bleg1_2478. Through in silico docking, RSWPWH and SSWWDR peptides with comparable binding energy to ampicillin were obtained. In vitro assay results showed RSWPWH and SSWWDR inhibited the activity of Bleg1_2478 by 50% at concentrations as low as 0.90 µM and 0.50 µM, respectively. At 10 µM of RSWPWH and 20 µM of SSWWDR, the activity of Bleg1_2478 was almost completely inhibited. Isothermal titration calorimetry (ITC) analyses showed slightly improved binding properties of the peptides compared to ampicillin. Docked peptide-protein complexes revealed that RSWPWH bound near the vicinity of the Bleg1_2478 active site while SSWWDR bound at the center of the active site itself. We postulate that the peptides caused the inhibition of Bleg1_2478 by reducing or blocking the accessibility of its active site from ampicillin, thus hampering its catalytic function.
Inappropriate use of antibiotics has been shown to contribute to the occurrence of multidrug-resistant organisms (MROs). A surveillance study was performed in the largest tertiary care hospital in Kuala Lumpur, Malaysia, from 2018 to 2020 to observe the trends of broad-spectrum antibiotics (beta-lactam/beta-lactamases inhibitors (BL/BLI), extended-spectrum cephalosporins (ESC), and fluoroquinolones (FQ)) and antibiotics against MRO (carbapenems, polymyxins, and glycopeptides) usage and the correlation between antibiotic consumption and MROs. The correlation between 3-year trends of antibiotic consumption (defined daily dose (DDD)/100 admissions) with MRO infection cases (per 100 admissions) was determined using a Jonckheere-Terpstra test and a Pearson's Correlation coefficient. The antimicrobial resistance trend demonstrated a positive correlation between ESC and FQ towards the development of methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)-producing Klebsiella spp, ESBL-producing Escherichia coli (E. coli), and MRO Acinetobacter baumannii (A. baumannii). Increasing carbapenem consumption was positively correlated with the occurrence of ESBL-producing Klebsiella spp and E. coli. Polymyxin use was positively correlated with ESBL-producing Klebsiella spp, MRO A. baumannii, and carbapenem-resistant Enterobacteriaceae. The findings reinforced concerns regarding the association between MRO development, especially with a surge in ESC and FQ consumption. Stricter use of antimicrobials is thus crucial to minimise the risk of emerging resistant organisms.