Displaying all 17 publications

Abstract:
Sort:
  1. Bhoo-Pathy N, Pignol JP, Verkooijen HM
    Lancet, 2014 Nov 22;384(9957):1846.
    PMID: 25457914 DOI: 10.1016/S0140-6736(14)62239-X
    Matched MeSH terms: Breast Neoplasms/radiotherapy*
  2. Chong ZX, Yeap SK, Ho WY
    Int J Radiat Biol, 2021;97(3):289-301.
    PMID: 33356761 DOI: 10.1080/09553002.2021.1864048
    Breast cancer is the most common type of cancer that affects females globally. Radiotherapy is a standard treatment option for breast cancer, where one of its most significant limitations is radioresistance development. MicroRNAs (miRNAs) are small, non-protein-coding RNAs that have been widely studied for their roles as disease biomarkers. To date, several in vitro, in vivo, and clinical studies have reported the roles of miRNAs in regulating radiosensitivity and radioresistance in breast cancer cells. This article reviews the roles of miRNAs in regulating treatment response toward radiotherapy and the associating cellular pathways. We identified 36 miRNAs that play a role in mediating radio-responses; 22 were radiosensitizing, 12 were radioresistance-promoting, and two miRNAs were reported to promote both effects. A brief overview of breast cancer therapy options, mechanism of action of radiation, and molecular mechanism of radioresistance was provided in this article. A summary of the latest clinical researches involving miRNAs in breast cancer radiotherapy was also included.
    Matched MeSH terms: Breast Neoplasms/radiotherapy*
  3. Yusof FH, Ung NM, Wong JH, Jong WL, Ath V, Phua VC, et al.
    PLoS One, 2015;10(6):e0128544.
    PMID: 26052690 DOI: 10.1371/journal.pone.0128544
    This study was carried out to investigate the suitability of using the optically stimulated luminescence dosimeter (OSLD) in measuring surface dose during radiotherapy. The water equivalent depth (WED) of the OSLD was first determined by comparing the surface dose measured using the OSLD with the percentage depth dose at the buildup region measured using a Markus ionization chamber. Surface doses were measured on a solid water phantom using the OSLD and compared against the Markus ionization chamber and Gafchromic EBT3 film measurements. The effect of incident beam angles on surface dose was also studied. The OSLD was subsequently used to measure surface dose during tangential breast radiotherapy treatments in a phantom study and in the clinical measurement of 10 patients. Surface dose to the treated breast or chest wall, and on the contralateral breast were measured. The WED of the OSLD was found to be at 0.4 mm. For surface dose measurement on a solid water phantom, the Markus ionization chamber measured 15.95% for 6 MV photon beam and 12.64% for 10 MV photon beam followed by EBT3 film (23.79% and 17.14%) and OSLD (37.77% and 25.38%). Surface dose increased with the increase of the incident beam angle. For phantom and patient breast surface dose measurement, the response of the OSLD was higher than EBT3 film. The in-vivo measurements were also compared with the treatment planning system predicted dose. The OSLD measured higher dose values compared to dose at the surface (Hp(0.0)) by a factor of 2.37 for 6 MV and 2.01 for 10 MV photon beams, respectively. The measurement of absorbed dose at the skin depth of 0.4 mm by the OSLD can still be a useful tool to assess radiation effects on the skin dermis layer. This knowledge can be used to prevent and manage potential acute skin reaction and late skin toxicity from radiotherapy treatments.
    Matched MeSH terms: Breast Neoplasms/radiotherapy
  4. Teh YC, Shaari NE, Taib NA, Ng CH, See MH, Tan GH, et al.
    Asian Pac J Cancer Prev, 2014;15(7):3163-7.
    PMID: 24815464
    BACKGROUND: Breast-conserving surgery (BCS) plus radiotherapy is equivalent to modified radical mastectomy (MRM) in terms of outcome. However there is wide variation in mastectomy rates dependent both on tumour and patient characteristics.

    OBJECTIVE: This study aimed to assess the determinants of surgery choice in Asian patients with early breast cancer in a middle-income country.

    MATERIALS AND METHODS: 184 patients with early breast cancer treated between Jan 2008 and Dec 2010 were recruited to complete a questionnaire. Chi-square test was used to analyze the association between surgery choice and demographic and tumour factors, surgeon recommendation, family member and partner opinions, fear of recurrence, avoidance of second surgery, fear of disfigurement, interference with sex life, fear of radiation and loss of femininity.

    RESULTS: 85 (46%) had BCS while 99 (54%) had mastectomy. Age >60, Chinese ethnicity, lower education level, and larger tumour size were significantly associated with mastectomy. Surgeon recommendation was important in surgery choice. Although both groups did not place much importance on interference with sex life, 14.1% of the BCS group felt it was very important compared to 5.1% in the mastectomy group and this was statistically significant. There was no statistical difference between the two groups in terms of the other factors. When analyzed by ethnicity, significantly more Malay and Indian women considered partner and family member opinions very important and were more concerned about loss of femininity compared to Chinese women. There were no statistical differences between the three ethnic groups in terms of the other factors.

    CONCLUSIONS: When counseling on surgical options, the surgeon has to take into account the ethnicity, social background and education level, age and reliance on partner and family members. Decision-making is usually a collective effort rather than just between the patient and surgeon, and involving the whole family into the process early is important.

    Matched MeSH terms: Breast Neoplasms/radiotherapy*
  5. Gokula K, Earnest A, Wong LC
    Radiat Oncol, 2013;8:268.
    PMID: 24229418 DOI: 10.1186/1748-717X-8-268
    This meta-analysis aims to ascertain the significance of early lung toxicity with 3-Dimensional (3D) conformal irradiation for breast carcinomas and identify the sub-groups of patients with increased risk.
    Matched MeSH terms: Breast Neoplasms/radiotherapy*
  6. Kalyani A, Rohaizak M, Cheong SK, Nor Aini U, Balasundaram V, Norlia A
    Med J Malaysia, 2010 Sep;65(3):227-8.
    PMID: 21939175
    We describe a patient with multiple myeloma, who initially responded to chemotherapy and went into remission. She presented 10 months later with a right breast lump which was confirmed by core biopsy to be a plasmacytoma. Further treatment with radiotherapy, thalidomide and later second line chemotherapy appeared unsuccessful and she showed rapid disease progression with rising paraproteins and new extramedullary plasmacytoma lesions in the forehead, supraclavicular region, nasopharynx, liver, spleen, pancreas and paraaortic lymph nodes.
    Matched MeSH terms: Breast Neoplasms/radiotherapy
  7. Guure CB, Ibrahim NA, Adam MB
    Comput Math Methods Med, 2013;2013:849520.
    PMID: 23476718 DOI: 10.1155/2013/849520
    Interval-censored data consist of adjacent inspection times that surround an unknown failure time. We have in this paper reviewed the classical approach which is maximum likelihood in estimating the Weibull parameters with interval-censored data. We have also considered the Bayesian approach in estimating the Weibull parameters with interval-censored data under three loss functions. This study became necessary because of the limited discussion in the literature, if at all, with regard to estimating the Weibull parameters with interval-censored data using Bayesian. A simulation study is carried out to compare the performances of the methods. A real data application is also illustrated. It has been observed from the study that the Bayesian estimator is preferred to the classical maximum likelihood estimator for both the scale and shape parameters.
    Matched MeSH terms: Breast Neoplasms/radiotherapy
  8. Yip CH, Taib NA, Abdullah MM, Wahid I
    Med J Malaysia, 2000 Sep;55(3):308-10.
    PMID: 11200709
    Presentation of breast cancer during pregnancy is a rare situation and one that requires a multidisciplinary approach involving an obstetrician, surgeon and oncologist. Management should be along the same principles as in non-pregnant patients and delay is not justifiable. Mastectomy and axillary clearance is the best option, followed by chemotherapy, which is safe after the first trimester. Radiation if required should be delayed until after delivery of the baby. We present here our experience with 6 patients who presented with breast cancer during pregnancy. Five patients refused any treatment until after delivery, while one underwent only a mastectomy and axillary clearance. The outcome was poor; all of them died between 14 months and 52 months. The poor outcome probably reflects the late stage at presentation in four of the patients (State 3 and 4) rather than the delay in treatment, while delay in treatment in the two who presented with early cancer (Stage 1 and 2) led to a more advanced stage after delivery.
    Matched MeSH terms: Breast Neoplasms/radiotherapy
  9. Moradi F, Ung NM, Khandaker MU, Mahdiraji GA, Saad M, Abdul Malik R, et al.
    Phys Med Biol, 2017 Jul 28;62(16):6550-6566.
    PMID: 28708603 DOI: 10.1088/1361-6560/aa7fe6
    The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators.

    HIGHLIGHTS: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin safety.

    Matched MeSH terms: Breast Neoplasms/radiotherapy*
  10. Jong WL, Ung NM, Wong JH, Ng KH, Wan Ishak WZ, Abdul Malik R, et al.
    Phys Med, 2016 Nov;32(11):1466-1474.
    PMID: 27842982 DOI: 10.1016/j.ejmp.2016.10.022
    The purpose of this study is to measure patient skin dose in tangential breast radiotherapy. Treatment planning dose calculation algorithm such as Pencil Beam Convolution (PBC) and in vivo dosimetry techniques such as radiochromic film can be used to accurately monitor radiation doses at tissue depths, but they are inaccurate for skin dose measurement. A MOSFET-based (MOSkin) detector was used to measure skin dose in this study. Tangential breast radiotherapies ("bolus" and "no bolus") were simulated on an anthropomorphic phantom and the skin doses were measured. Skin doses were also measured in 13 patients undergoing each of the techniques. In the patient study, the EBT2 measurements and PBC calculation tended to over-estimate the skin dose compared with the MOSkin detector (p<0.05) in the "no bolus radiotherapy". No significant differences were observed in the "bolus radiotherapy" (p>0.05). The results from patients were similar to that of the phantom study. This shows that the EBT2 measurement and PBC calculation, while able to predict accurate doses at tissue depths, are inaccurate in predicting doses at build-up regions. The clinical application of the MOSkin detectors showed that the average total skin doses received by patients were 1662±129cGy (medial) and 1893±199cGy (lateral) during "no bolus radiotherapy". The average total skin doses were 4030±72cGy (medial) and 4004±91cGy (lateral) for "bolus radiotherapy". In some cases, patient skin doses were shown to exceed the dose toxicity level for skin erythema. Hence, a suitable device for in vivo dosimetry is necessary to accurately determine skin dose.
    Matched MeSH terms: Breast Neoplasms/radiotherapy*
  11. Oroji A, Omar M, Yarahmadian S
    J Theor Biol, 2016 10 21;407:128-137.
    PMID: 27457094 DOI: 10.1016/j.jtbi.2016.07.035
    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population.
    Matched MeSH terms: Breast Neoplasms/radiotherapy*
  12. Alzoubi AS, Kandaiya S, Shukri A, Elsherbieny E
    Australas Phys Eng Sci Med, 2010 Jun;33(2):137-44.
    PMID: 20309667 DOI: 10.1007/s13246-010-0011-y
    Second cancer induction in the contralateral breast (CB) is an issue of some concern in breast radiotherapy especially for women under the age of 45 years at the time of treatment. The CB dose from 2-field and 3-field techniques in post-mastectomy chest wall irradiations in an anthropomorphic phantom as well as in patients were measured using thermoluminescent dosimeters (TLDs) at the local radiotherapy center. Breast and chest wall radiotherapy treatments were planned conformally (3D-CRT) and delivered using 6-MV photons. The measured CB dose at the surface fell sharply with distance from the field edge. However, the average ratio of the measured to the calculated CB dose using the pencil beam algorithm at the surface was approximately 53%. The mean and median measured internal dose at the posterior border of CB in a phantom was 5.47+/-0.22 cGy and 5.44 cGy, respectively. The internal CB dose was relatively independent of depth. In the present study the internal CB dose is 2.1-4.1% of the prescribed dose which is comparable to the values reported by other authors.
    Matched MeSH terms: Breast Neoplasms/radiotherapy*
  13. Syadwa AS, Anita ZB
    Med J Malaysia, 2018 08;73(4):190-196.
    PMID: 30121680 MyJurnal
    AIM: Symptomatic relief following palliative radiotherapy for advanced cancers may take a few weeks up to a few months to achieve. Thus, accurate prognostication is important to avoid harm to these patients with limited lifespan. We conducted a retrospective cohort study to determine the median survival and 30-day mortality (30-DM) and factors associated with these parameters in our centre.

    METHODS: Data from 585 eligible patients who received palliative radiotherapy between January 2012 and December 2014 were analysed. Median overall survival was calculated from the commencement of first fraction of the last course of radiotherapy to date of death or when censored. 30-DM was calculated as the proportion of patients who died within 30 days from treatment start date. Kaplan-Meier survival analysis was used to estimate survival. Chi-square test and logistic regression was used to assess the impact of potential prognostic factors on median survival and 30-DM.

    RESULTS: The most common diagnoses were lung and breast cancers and most common irradiated sites were bone and brain. Median survival and 30-DM were 97 days and 22.7% respectively. Primary cancer, age, treatment course, performance status, systemic treatment post radiotherapy and intended radiotherapy treatment completed had an impact on median survival whereas mainly the latter three factors had an impact on 30-DM.

    CONCLUSION: Median survival and factors affecting both survival and 30-DM in our study are comparable to others. However, a 30-DM rate of 22.7% is significantly higher compared to the literature. We need to better select patients who will benefit from palliative radiotherapy in our centre.

    Matched MeSH terms: Breast Neoplasms/radiotherapy
  14. Hindley A, Zain Z, Wood L, Whitehead A, Sanneh A, Barber D, et al.
    Int J Radiat Oncol Biol Phys, 2014 Nov 15;90(4):748-55.
    PMID: 25585779 DOI: 10.1016/j.ijrobp.2014.06.033
    We wanted to confirm the benefit of mometasone furoate (MF) in preventing acute radiation reactions, as shown in a previous study (Boström et al, Radiother Oncol 2001;59:257-265).
    Matched MeSH terms: Breast Neoplasms/radiotherapy*
  15. Bhoo-Pathy N, Verkooijen HM, Wong FY, Pignol JP, Kwong A, Tan EY, et al.
    Int J Cancer, 2015 Nov 15;137(10):2504-12.
    PMID: 26018878 DOI: 10.1002/ijc.29617
    The value of adjuvant radiotherapy in triple-negative breast cancer (TNBC) is currently debated. We assessed the association between adjuvant radiotherapy and survival in a large cohort of Asian women with TNBC. Women diagnosed with TNBC from 2006 to 2011 in five Asian centers (N = 1,138) were included. Survival between patients receiving mastectomy only, breast-conserving therapy (BCT, lumpectomy and adjuvant radiotherapy) and mastectomy with radiotherapy were compared, and adjusted for demography, tumor characteristics and chemotherapy types. Median age at diagnosis was 53 years (range: 23-96 years). Median tumor size at diagnosis was 2.5 cm and most patients had lymph node-negative disease. The majority of patients received adjuvant chemotherapy (n = 861, 76%) comprising predominantly anthracycline-based regimes. In 775 women with T1-2, N0-1, M0 TNBCs, 5-year relative survival ratio (RSR) was highest in patients undergoing mastectomy only (94.7%, 95% CI: 88.8-98.8%), followed by BCT (90.8%, 95% CI: 85.0-94.7%), and mastectomy with radiotherapy (82.3%, 95% CI: 73.4-88.1%). The adjusted risks of mortality between the three groups were not significantly different. In 363 patients with T3-4, N2-3, M0 TNBCs, BCT was associated with highest 5-year RSR (94.1%, 95% CI: 81.3-99.4%), followed by mastectomy with radiotherapy (62.7%, 95% CI: 54.3-70.1%), and mastectomy only (58.6%, 95% CI: 43.5-71.6%). Following multivariable adjustment, BCT and mastectomy with radiotherapy remained significantly associated with lower mortality risk compared to mastectomy only. Overall, adjuvant radiotherapy was associated with higher survival in women aged <40 years, but not in older women. Adjuvant radiotherapy appears to be independently associated with a survival gain in locally advanced as well as in very young TNBC.
    Matched MeSH terms: Triple Negative Breast Neoplasms/radiotherapy*
  16. Kue CS, Kamkaew A, Lee HB, Chung LY, Kiew LV, Burgess K
    Mol Pharm, 2015 Jan 5;12(1):212-22.
    PMID: 25487316 DOI: 10.1021/mp5005564
    This contribution features a small molecule that binds TrkC (tropomyosin receptor kinase C) receptor that tends to be overexpressed in metastatic breast cancer cells but not in other breast cancer cells. A sensitizer for (1)O2 production conjugated to this structure gives 1-PDT for photodynamic therapy. Isomeric 2-PDT does not bind TrkC and was used as a control throughout; similarly, TrkC- cancer cells were used to calibrate enhanced killing of TrkC+ cells. Ex vivo, 1- and 2-PDT where only cytotoxic when illuminated, and 1-PDT, gave higher cell death for TrkC+ breast cancer cells. A 1 h administration-to-illumination delay gave optimal TrkC+/TrkC--photocytotoxicity, and distribution studies showed the same delay was appropriate in vivo. In Balb/c mice, a maximum tolerated dose of 20 mg/kg was determined for 1-PDT. 1- and 2-PDT (single, 2 or 10 mg/kg doses and one illumination, throughout) had similar effects on implanted TrkC- tumors, and like those of 2-PDT on TrkC+ tumors. In contrast, 1-PDT caused dramatic TrkC+ tumor volume reduction (96% from initial) relative to the TrkC- tumors or 2-PDT in TrkC+ models. Moreover, 71% of the mice treated with 10 mg/kg 1-PDT (n = 7) showed full tumor remission and survived until 90 days with no metastasis to key organs.
    Matched MeSH terms: Breast Neoplasms/radiotherapy*
  17. Sisin NNT, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, et al.
    Int J Nanomedicine, 2019;14:9941-9954.
    PMID: 31908451 DOI: 10.2147/IJN.S228919
    Purpose: The aim of this study was to investigate the potential of the synergetic triple therapeutic combination encompassing bismuth oxide nanoparticles (BiONPs), cisplatin (Cis), and high dose rate (HDR) brachytherapy with Ir-192 source in breast cancer and normal fibroblast cell line.

    Methods: In vitro models of breast cancer cell lines (MCF-7, MDA-MB-231) and normal fibroblast cell line (NIH/3T3) were employed. Cellular localization and cytotoxicity studies were conducted prior to inspection on the radiosensitization effects and generation of reactive oxygen species (ROS) on three proposed radiosensitizers: BiONPs, Cis, and BiONPs-Cis combination (BC). The optimal, non-cytotoxic concentration of BiONPs (0.5 mM) and the 25% inhibitory concentration of Cis (1.30 µM) were applied. The radiosensitization effects were evaluated by using a 0.38 MeV Iridium-192 HDR brachytherapy source over a prescribed dose range of 0 Gy to 4 Gy.

    Results: The cellular localization of BiONPs was visualized by light microscopy and accumulation of the BiONPs within the vicinity of the nuclear membrane was observed. Quantification of the sensitization enhancement ratio extrapolated from the survival curves indicates radiosensitization effects for MCF-7 and MDA-MB-231 when treated with BiONPs, Cis, and BC. However, NIH/3T3 cells exhibited contradictive behavior as it only reacted towards the BC combination. Nonetheless, the MCF-7 cell line loaded with BC shows the highest SER of 4.29. ROS production analysis, on the other hand, shows that Cis and BC radiosensitizers generated the highest free radicals in comparison to BiONPs alone.

    Conclusion: A BiONPs-Cis combination was unveiled as a novel approach that offers promising radiosensitization enhancement that will increase the efficiency of tumor control while preserving the normal tissue at a reduced dose. This data is the first precedent to prove the synergetic implication of BiONPs, Cis, and HDR brachytherapy that will be beneficial for future chemoradiotherapy strategies in cancer care.

    Matched MeSH terms: Breast Neoplasms/radiotherapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links