Displaying all 5 publications

Abstract:
Sort:
  1. Lee MK, Li X, Yap ACS, Cheung PCK, Tan CS, Ng ST, et al.
    Front Pharmacol, 2018;9:461.
    PMID: 29867469 DOI: 10.3389/fphar.2018.00461
    Lignosus rhinocerotis has a long history of use by the indigenous community within East Asia to treat a range of health conditions including asthma and chronic cough. To date, there is limited scientific evidence to support its therapeutic effects in relieving these airways conditions. In this study, we examined the effects of the different molecular weight fractions [high-molecular-weight (HMW), medium-molecular-weight (MMW), and low-molecular-weight (LMW)] obtained from the cold water sclerotial extract (CWE) of L. rhinocerotis on airways patency using airway segments isolated from Sprague Dawley rat in an organ bath set-up. It is demonstrated that the HMW and MMW fractions exhibited higher efficacy in relaxing the pre-contracted airways when compared to the CWE and LMW fraction. In addition, the HMW fraction markedly supressed carbachol-, 5-hydroxytrptamine-, and calcium-induced airway contractions. CWE demonstrated a lower efficacy than the HMW fraction but it also significantly attenuated carbachol- and calcium-induced airway contractions. Results showed that the bronchorelaxation effect of CWE and fractions is mediated via blockade of extracellular Ca2+ influx. The composition analysis revealed the following parts of carbohydrate and proteins, respectively: HMW fraction: 71 and 4%; MMW fraction: 35 and 1%; and LMW fraction: 22 and 0.3%. Our results strongly suggest that the polysaccharide-protein complex or proteins found in the HMW and MMW fractions is likely to contribute to the bronchorelaxation effect of CWE.
    Matched MeSH terms: Carbachol
  2. Loong BJ, Tan JH, Lim KH, Mbaki Y, Ting KN
    Naunyn Schmiedebergs Arch Pharmacol, 2015 Oct;388(10):1061-7.
    PMID: 26051407 DOI: 10.1007/s00210-015-1140-3
    The functional responses of different overnight-stored in vitro tissues are not clearly described in any animal model. The influence of overnight storage in an animal model may vary between tissue types. We employed Sprague-Dawley rat as our animal model and investigated the functional changes of rat aorta, trachea, bronchus and bladder that were used (i) immediately after surgical removal (denoted as fresh) and (ii) after storage in aerated (95% O2, 5% CO2) Krebs-Ringer bicarbonate solution at 4 °C for 24 h (denoted as stored). The aorta ring was pre-contracted with phenylephrine, and the functional response of the tissue was investigated using isoprenaline, forskolin and carbachol. Carbachol was also used to increase the tone in trachea, bronchus rings and bladder strips. A clear reduced function of endothelium, with a minor if any effect in the smooth muscle function in rat aorta was observed after overnight storage. The contractile response of overnight-stored rat airway (trachea and bronchus) and bladder smooth muscles remained unchanged. Among all tested tissues, only bronchus showed a reduced response rate (only 40% responded) after storage. In vitro rat tissues that are stored in Krebs solution at 4 °C for 24 h can still be used to investigate smooth muscle responses, however, not endothelium-mediated responses for aorta. The influence of overnight storage on different tissues from an animal model (Sprague-Dawley rat in our study) also provides an insight in maximising the use of sacrificed animals.
    Matched MeSH terms: Carbachol/pharmacology
  3. Lee MK, Lim KH, Millns P, Mohankumar SK, Ng ST, Tan CS, et al.
    Phytomedicine, 2018 Mar 15;42:172-179.
    PMID: 29655683 DOI: 10.1016/j.phymed.2018.03.025
    BACKGROUND: Lignosus rhinocerotis (Cooke) Ryvarden is a popular medicinal mushroom used for centuries in Southeast Asia to treat asthma and chronic cough. The present study aimed to investigate the effect of this mushroom on airways patency.

    MATERIALS AND METHODS: The composition of L. rhinocerotis TM02 cultivar was analyzed. Organ bath experiment was employed to study the bronchodilator effect of Lignosus rhinocerotis cold water extract (CWE) on rat isolated airways. Trachea and bronchus were removed from male Sprague-Dawley rats, cut into rings of 2 mm, pre-contracted with carbachol before adding CWE into the bath in increasing concentrations. To investigate the influence of incubation time, tissues were exposed to intervals of 5, 15 and 30 min between CWE concentrations after pre-contraction with carbachol in subsequent protocol. Next, tissues were pre-incubated with CWE before the addition of different contractile agents, carbachol and 5-hydroxytrptamine (5-HT). The bronchodilator effect of CWE was compared with salmeterol and ipratropium. In order to uncover the mechanism of action of CWE, the role of beta-adrenoceptor, potassium and calcium channels was investigated.

    RESULTS: Composition analysis of TM02 cultivar revealed the presence of β-glucans and derivatives of adenosine. The extract fully relaxed the trachea at 3.75 mg/ml (p carbachol-induced contractions (in both trachea, p = 0.0012 and bronchus, p = 0.001), and 5-HT-induced contractions (in trachea, p = 0.0048 and bronchus, p = 0.0014). Ipratropium has demonstrated a significant relaxation effect in both trachea (p = 0.0004) and bronchus (p = 0.0031), whereas salmeterol has only affected the bronchus (p = 0.0104). The involvement of β2-adrenoceptor and potassium channel in CWE-mediated airway relaxation is ruled out, but the bronchodilator effect was unequivocally affected by influx of calcium.

    CONCLUSIONS: The bronchodilator effect of L. rhinocerotis on airways is mediated by calcium signalling pathway downstream of Gαq-coupled protein receptors. The airway relaxation effect is both concentration- and incubation time-dependent. Our findings provide unequivocal evidence to support its traditional use to relieve asthma and cough.

    Matched MeSH terms: Carbachol/pharmacology
  4. Govindaraju, Kayatri, Lee, Mei Kee, Mbaki, Yvonne, Ting, Kang Nee
    MyJurnal
    The general notion of activation of Gq-protein coupled receptors (GPCR) involves the mobilisation of stored and extracellular calcium and leads to smooth muscle tissue contraction. The aim of this study was to investigate the involvement of calcium mediated contractions in vascular and airway smooth muscles. Using standard organ bath procedures, aortic and tracheal rings were obtained from 6 to 8 week-old male Sprague Dawley rats. To activate the Gq protein receptors, phenylephrine (PE), an α1-adrenoceptor agonist, and carbachol, a M3 cholinoceptor agonist was added to baths containing the aortic and tracheal rings, respectively. The maximum response (Emax) to PE was reduced from 158.8 ± 11.8% (n=6) to 62.5 ± 12.4 % (n=8) upon removal of extracellular calcium in Krebs-Ringer solution. Maximal response to PE was also suppressed in the presence of nifedipine, a L-type Ca2+ channel inhibitor, (70.3 ± 11 %, n=8) and SKF96365, a canonical transient receptor potential cation channel inhibitor, (26.7 ± 13.2 %, n=5) when the influx of extracellular calcium was blocked. Removal of stored calcium also attenuated the PE contraction (p0.05). From these observations, we conclude that the role of stored and extracellular calcium in Gq protein activation is not the same across different types of smooth muscle tissues.
    Matched MeSH terms: Carbachol
  5. Silva A, Kuruppu S, Othman I, Goode RJ, Hodgson WC, Isbister GK
    Neurotox Res, 2017 01;31(1):11-19.
    PMID: 27401825 DOI: 10.1007/s12640-016-9650-4
    Russell's vipers are snakes of major medical importance in Asia. Russell's viper (Daboia russelii) envenoming in Sri Lanka and South India leads to a unique, mild neuromuscular paralysis, not seen in other parts of the world where the snake is found. This study aimed to identify and pharmacologically characterise the major neurotoxic components of Sri Lankan Russell's viper venom. Venom was fractionated using size exclusion chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). In vitro neurotoxicities of the venoms, fractions and isolated toxins were measured using chick biventer and rat hemidiaphragm preparations. A phospholipase A2 (PLA2) toxin, U1-viperitoxin-Dr1a (13.6 kDa), which constitutes 19.2 % of the crude venom, was isolated and purified using HPLC. U1-viperitoxin-Dr1a produced concentration-dependent in vitro neurotoxicity abolishing indirect twitches in the chick biventer nerve-muscle preparation, with a t 90 of 55 ± 7 min only at 1 μM. The toxin did not abolish responses to acetylcholine and carbachol indicating pre-synaptic neurotoxicity. Venom, in the absence of U1-viperitoxin-Dr1a, did not induce in vitro neurotoxicity. Indian polyvalent antivenom, at the recommended concentration, only partially prevented the neurotoxic effects of U1-viperitoxin-Dr1a. Liquid chromatography mass spectrometry analysis confirmed that U1-viperitoxin-Dr1a was the basic S-type PLA2 toxin previously identified from this venom (NCBI-GI: 298351762; SwissProt: P86368). The present study demonstrates that neurotoxicity following Sri Lankan Russell's viper envenoming is primarily due to the pre-synaptic neurotoxin U1-viperitoxin-Dr1a. Mild neurotoxicity observed in severely envenomed Sri Lankan Russell's viper bites is most likely due to the low potency of U1-viperitoxin-Dr1a, despite its high relative abundance in the venom.
    Matched MeSH terms: Carbachol/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links