Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Pandurangan AK, Saadatdoust Z, Esa NM, Hamzah H, Ismail A
    Biofactors, 2015 Jan-Feb;41(1):1-14.
    PMID: 25545372 DOI: 10.1002/biof.1195
    Colorectal cancer (CRC) is the third most common malignancy in males and the second most common cancer worldwide. Chronic colonic inflammation is a known risk factor for CRC. Cocoa contains many polyphenolic compounds that have beneficial effects in humans. The objective of this study is to explore the antioxidant properties of cocoa in the mouse model of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated cancer, focusing on the activation of Nrf2 signaling. Mice were treated with AOM/DSS and randomized to receive either a control diet or a 5 and 10% cocoa diet during the study period. On day 62 of the experiment, the entire colon was processed for biochemical and histopathological examination and further evaluations. Increased levels of malondialdehyde (MDA) were observed in AOM/DSS-induced mice; however, subsequent administration of cocoa decreased the MDA. Enzymatic and nonenzymatic antioxidants, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were decreased in the AOM/DSS mice. Cocoa treatment increases the activities/levels of enzymatic and nonenzymatic antioxidants. Inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were elevated during AOM/DSS-induction, and treatment with 5 and 10% cocoa effectively decreases the expression of iNOS and COX-2. The NF-E2-related factor 2 and its downstream targets, such as NQO1 and UDP-GT, were increased by cocoa treatment. The results of our study suggest that cocoa may merit further clinical investigation as a chemopreventive agent that helps prevent CAC.
    Matched MeSH terms: Colorectal Neoplasms/genetics
  2. Cheah PL, Looi LM, Teoh KH, Rahman NA, Wong LX, Tan SY
    Asian Pac J Cancer Prev, 2014;15(7):3287-91.
    PMID: 24815484
    BACKGROUND: The interesting preponderance of Chinese with colorectal carcinoma (CRC) amongst the three major ethnic groups in Malaysia prompted a study to determine DNA mismatch repair (MMR) status in our CRC and attempt correlation with patient age, gender and ethnicity as well as location, grade, histological type and stage of tumour. Histologically re-confirmed CRC, diagnosed between 1st January 2005 and 31st December 2007 at the Department of Pathology, University of Malaya Medical Centre, were immunohistochemically stained with monoclonal antibodies to MMR proteins, MLH1, MSH2, MSH6 and PMS2 on the Ventana Benchmark XT autostainer. Of the 142 CRC cases entered into the study, there were 82 males and 60 females (M:F=1.4:1). Ethnically, 81 (57.0%) were Chinese, 32 (22.5%) Malays and 29 (20.4%) Indians. The patient ages ranged between 15-87 years (mean=62.4 years) with 21 cases <50-years and 121 ≥50-years of age. 14 (9.9%) CRC showed deficient MMR (dMMR). Concurrent loss of MLH1 and PMS2 occurred in 10, MSH2 and MSH6 in 2 with isolated loss of MSH6 in 1 and PMS2 in 1. dMMR was noted less frequently amongst the Chinese (6.2%) in comparison with their combined Malay and Indian counterparts (14.8%), and was associated with right sided and poorly differentiated tumours (p<0.05). 3 of the 5 (60.0%) dMMR CRC cases amongst the Chinese and 1 of 9 cases (11.1%) amongst the combined Malay and Indian group were <50-years of age. No significant association of dMMR was noted with patient age and gender, tumour stage or mucinous type.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  3. Yip WK, Choo CW, Leong VC, Leong PP, Jabar MF, Seow HF
    APMIS, 2013 Oct;121(10):954-66.
    PMID: 23992303 DOI: 10.1111/apm.12152
    Molecular alterations in KRAS, BRAF, PIK3CA, and PTEN have been implicated in designing targeted therapy for colorectal cancer (CRC). The present study aimed to determine the status of these molecular alterations in Malaysian CRCs as such data are not available in the literature. We investigated the mutations of KRAS, BRAF, and PTEN, the gene amplification of PIK3CA, and the protein expression of PTEN and phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110α) by direct DNA sequencing, quantitative real-time PCR, and immunohistochemistry, respectively, in 49 CRC samples. The frequency of KRAS (codons 12, 13, and 61), BRAF (V600E), and PTEN mutations, and PIK3CA amplification was 25.0% (11/44), 2.3% (1/43), 0.0% (0/43), and 76.7% (33/43), respectively. Immunohistochemical staining demonstrated loss of PTEN protein in 54.5% (24/44) of CRCs and no significant difference in PI3K p110α expression between CRCs and the adjacent normal colonic mucosa (p = 0.380). PIK3CA amplification was not associated with PI3K p110α expression level, but associated with male cases (100% of male cases vs 56% of female cases harbored amplified PIK3CA, p = 0.002). PI3K p110α expression was significantly higher (p = 0.041) in poorly/moderately differentiated carcinoma compared with well-differentiated carcinoma. KRAS mutation, PIK3CA amplification, PTEN loss, and PI3K p110α expression did not correlate with Akt phosphorylation or Ki-67 expression. KRAS mutation, PIK3CA amplification, and PTEN loss were not mutually exclusive. This is the first report on CRC in Malaysia showing comparable frequency of KRAS mutation and PTEN loss, lower BRAF mutation rate, higher PIK3CA amplification frequency, and rare PTEN mutation, as compared with published reports.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  4. Jada SR, Lim R, Wong CI, Shu X, Lee SC, Zhou Q, et al.
    Cancer Sci, 2007 Sep;98(9):1461-7.
    PMID: 17627617
    The objectives of the present study were (i) to study the pharmacogenetics of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A in three distinct healthy Asian populations (Chinese, Malays and Indians), and (ii) to investigate the polygenic influence of these polymorphic variants in irinotecan-induced neutropenia in Asian cancer patients. Pharmacokinetic and pharmacogenetic analyses were done after administration of irinotecan as a 90-min intravenous infusion of 375 mg/m(2) once every 3 weeks (n = 45). Genotypic-phenotypic correlates showed a non-significant influence of UGT1A1*28 and ABCG2 c.421C>A polymorphisms on the pharmacokinetics of SN-38 (P > 0.05), as well as severity of neutropenia (P > 0.05). Significantly higher exposure levels to SN-38 (P = 0.018), lower relative extent of glucuronidation (REG; P = 0.006) and higher biliary index (BI; P = 0.003) were found in cancer patients homozygous for the UGT1A1*6 allele compared with patients harboring the reference genotype. The mean absolute neutrophil count (ANC) was 85% lower and the prevalence of grade 4 neutropenia (ANC < or = 500/microL) was 27% in patients homozygous for UGT1A1*6 compared with the reference group. Furthermore, the presence of the UGT1A1*6 allele was associated with an approximately 3-fold increased risk of developing severe grade 4 neutropenia compared with patients harboring the reference genotype. These exploratory findings suggest that homozygosity for UGT1A1*6 allele may be associated with altered SN-38 disposition and may increase the risk of severe neutropenia in Asian cancer patients, particularly in the Chinese cancer patients who comprised 80% (n = 36) of the patient population in the present study.
    Matched MeSH terms: Colorectal Neoplasms/genetics
  5. Nassar ZD, Aisha AF, Idris N, Khadeer Ahamed MB, Ismail Z, Abu-Salah KM, et al.
    Oncol Rep, 2012 Mar;27(3):727-33.
    PMID: 22134768 DOI: 10.3892/or.2011.1569
    Deregulated cell signaling pathways result in cancer development. More than one signal transduction pathway is involved in colorectal cancer pathogenesis and progression. Koetjapic acid (KA) is a naturally occurring seco-A-ring oleanene triterpene isolated from the Sandoricum koetjape stem bark. We report the cellular and molecular mechanisms of anticancer activity of KA towards human colorectal cancer. The results showed that KA induces apoptosis in HCT 116 colorectal carcinoma cells by inducing the activation of extrinsic and intrinsic caspases. We confirmed that KA-induced apoptosis was mediated by DNA fragmentation, nuclear condensation and disruption in the mitochondrial membrane potential. Further studies on the effect of KA on cancer pathways show that the compound causes down-regulation of Wnt, HIF-1α, MAP/ERK/JNK and Myc/Max signaling pathways and up-regulates the NF-κB signaling pathway. The result of this study highlights the anticancer potential of KA against colorectal cancer.
    Matched MeSH terms: Colorectal Neoplasms/genetics
  6. Khor TO, Gul YA, Ithnin H, Seow HF
    Cancer Lett, 2004 Jul 16;210(2):139-50.
    PMID: 15183529
    The enhancement of cell proliferation and promotion of cell survival via the inhibition of apoptosis is thought to be the key to the initiation and progression of cancers. The phosphatidylinositol-3 kinase (PI3K)/Akt is an important survival signal pathway that has been shown to be crucial in the regulation of balance between pro-apoptotic and survival (anti-apoptotic) signal. In this study, the expression of phosphorylated Akt at Thr308 and Ser473, BCL-2-antagonist of cell death (BAD) at Ser136 and glycogen synthase kinase-3beta (GSK-3beta) at Ser9 in 47 paraffin-embedded human colorectal carcinoma (CRC) tissues were determined by immunohistochemical staining in order to dissect the alterations in the signal transduction pathways in CRC. Our results showed that there was a significant increase in the expression of these biomolecules in CRC tissues compared to the apparently normal adjacent tissues. The frequency of increased expression in tumor colonic mucosa were as follows: p-Akt1/2/3 (Thr308) = 16/47 (34%); p-Akt1 (Ser473) = 21/47 (44.7%); phospho-BAD (p-BAD) Ser136 = 27/47 (57.4%) and phospho-GSK-3beta (p-GSK-3beta) = 21/47 (44.7%). Analysis of the total p-Akt1 (Ser473), p-Akt1/2/3 (Thr308), p-GSK-3beta (Ser9) and p-BAD (Ser136) score found that there was a statistically significant relationship with each other. A statistically significant positive linear relationship was found between total p-Akt (Ser473) score and total p-GSK-3beta (Ser9) score as well as with total p-BAD (Ser136) score. On the other hand, total p-Akt1/2/3 (Thr308) scores had a statistically significant positive linear relationship with p-GSK-3beta (Ser9) only. The Akt targets, p-GSK-3beta (Ser9) and p-BAD (Ser136) were positively correlated to each other. There was no significant correlation between clinico-pathological data with total p-Akt1 (Ser473), p-Akt1/2/3 (Thr308), p-GSK-3beta (Ser9) and p-BAD (Ser136) score except for age. The total scores of p-GSK-3beta were found to be higher in patients in the age group of greater than 60. This is the first report of p-Akt1/2/3 (Thr308) and p-BAD (Ser136) expression in primary colorectal tumor tissue. Our data further supports the role of PI3K/Akt signaling pathways in the pathogenesis of CRC and contributes to the identification of target molecules in the signal transduction pathway for cancer therapy.
    Matched MeSH terms: Colorectal Neoplasms/genetics
  7. Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A
    Naunyn Schmiedebergs Arch Pharmacol, 2020 03;393(3):405-417.
    PMID: 31641820 DOI: 10.1007/s00210-019-01730-2
    The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
    Matched MeSH terms: Colorectal Neoplasms/genetics
  8. Cheng AL, Cornelio G, Shen L, Price T, Yang TS, Chung IJ, et al.
    Clin Colorectal Cancer, 2017 06;16(2):e73-e88.
    PMID: 27780749 DOI: 10.1016/j.clcc.2016.08.005
    BACKGROUND: In patients with KRAS wild-type (wt) metastatic colorectal cancer (mCRC), outcomes with first-line chemotherapies are improved by adding weekly cetuximab. The APEC study investigated first-line once-every-2-weeks cetuximab plus chemotherapy for patients with KRAS wt mCRC; additional biomarker subgroups were also analyzed.

    PATIENTS AND METHODS: APEC was a nonrandomized phase 2 trial conducted in the Asia-Pacific region. Patients (n = 289) received once-every-2-weeks cetuximab with investigator's choice of chemotherapy (FOLFOX or FOLFIRI). The primary end point was best confirmed overall response rate (BORR); progression-free survival (PFS) and overall survival (OS) were secondary end points. Early tumor shrinkage (ETS) and depth of response (DpR) were also evaluated.

    RESULTS: In the KRAS wt population, BORR was 58.8%, median PFS 11.1 months, and median OS 26.8 months. Expanded RAS mutational analysis revealed that patients with RAS wt mCRC had better outcomes (BORR = 64.7%; median PFS = 13.0 months; median OS = 28.4 months). The data suggest that ETS and DpR may be associated with survival outcomes in the RAS wt population. Although this study was not designed to formally assess differences in outcome between treatment subgroups, efficacy results appeared similar for patients treated with FOLFOX and FOLFIRI. There were no new safety findings; in particular, grade 3/4 skin reactions were within clinical expectations.

    CONCLUSION: The observed activity and safety profile is similar to that reported in prior first-line pivotal studies involving weekly cetuximab, suggesting once-every-2-weeks cetuximab is effective and tolerable as first-line therapy and may represent an alternative to weekly administration.

    Matched MeSH terms: Colorectal Neoplasms/genetics
  9. Li H, Zhao L, Lau YS, Zhang C, Han R
    Oncogene, 2021 01;40(1):177-188.
    PMID: 33110234 DOI: 10.1038/s41388-020-01523-5
    Colorectal cancer is the third leading cause of cancer-related deaths in the United States and the third most common cancer in men and women. Around 20% colon cancer cases are closely linked with colitis. Both environmental and genetic factors are thought to contribute to colon inflammation and tumor development. However, the genetic factors regulating colitis and colon tumorigenesis remain elusive. Since reactive oxygen species (ROS) is vitally involved in tissue inflammation and tumorigenesis, here we employed a genome-wide CRISPR knockout screening approach to systemically identify the genetic factors involved in the regulation of oxidative stress. Next generation sequencing (NGS) showed that over 600 gRNAs including the ones targeting LGALS2 were highly enriched in cells survived after sublethal H2O2 challenge. LGALS2 encodes the glycan-binding protein Galectin 2 (Gal2), which is predominantly expressed in the gastrointestinal tract and downregulated in human colon tumors. To examine the role of Gal2 in colitis, we employed the dextran sodium sulfate (DSS)-induced acute colitis model in mice with (WT) or without Lgals2 (Gal2-KO) and showed that Gal2 deficiency ameliorated DSS-induced colitis. We further demonstrated that Gal2-KO mice developed significantly larger tumors than WT mice using Azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colorectal cancer model. We found that STAT3 phosphorylation was significantly increased in Gal2-deficient tumors as compared to those in WT mice. Gal2 overexpression decreased the proliferation of human colon tumor epithelial cells and blunted H2O2-induced STAT3 phosphorylation. Overall, our results demonstrate that Gal2 plays a suppressive role in colon tumor growth and highlights the therapeutic potential of Gal2 in colon cancer.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  10. Kaur G, Masoud A, Raihan N, Radzi M, Khamizar W, Kam LS
    Indian J Med Res, 2011 Aug;134:186-92.
    PMID: 21911971
    DNA mismatch repair gene (MMR) abnormalities are seen in 95 per cent of hereditary nonpolyposis colorectal cancer (HNPCC) and 10-15 per cent of sporadic colorectal cancers. There are no data on MMR abnormalities in Malaysian colorectal cancer patients. This study was aimed to determine the frequency of abnormal MMR gene protein expression in colorectal carcinoma in Northern Peninsular Malaysia using immunohistochemistry.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  11. Mohd Suzairi MS, Tan SC, Ahmad Aizat AA, Mohd Aminudin M, Siti Nurfatimah MS, Andee ZD, et al.
    Cancer Epidemiol, 2013 Oct;37(5):634-8.
    PMID: 23806437 DOI: 10.1016/j.canep.2013.05.007
    To investigate the allele and genotype frequencies of NFKB1 -94 ins/del ATTG (rs28720239) polymorphism and to evaluate the association between the polymorphism and colorectal cancer (CRC) risk in Malaysian population.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  12. Abedini F, Hosseinkhani H, Ismail M, Domb AJ, Omar AR, Chong PP, et al.
    Int J Nanomedicine, 2012;7:4159-68.
    PMID: 22888250 DOI: 10.2147/IJN.S29823
    The failure of colorectal cancer treatments is partly due to overexpression of CXCR4 by tumor cells, which plays a critical role in cell metastasis. Moreover, serum alkaline phosphatase (ALP) levels are frequently elevated in patients with metastatic colorectal cancer. A polysaccharide, dextran, was chosen as the vector of siRNA. Spermine was conjugated to oxidized dextran by reductive amination process to obtain cationized dextran, so-called dextran-spermine, in order to prepare CXCR4-siRNAs/dextran-spermine nanoparticles. The fabricated nanoparticles were used in order to investigate whether downregulation of CXCR4 expression could affect serum ALP in mouse models of colorectal cancer.
    Matched MeSH terms: Colorectal Neoplasms/genetics
  13. Yip KT, Das PK, Suria D, Lim CR, Ng GH, Liew CC
    J Exp Clin Cancer Res, 2010;29:128.
    PMID: 20846378 DOI: 10.1186/1756-9966-29-128
    BACKGROUND: Colorectal cancer (CRC) screening is key to CRC prevention and mortality reduction, but patient compliance with CRC screening is low. We previously reported a blood-based test for CRC that utilizes a seven-gene panel of biomarkers. The test is currently utilized clinically in North America for CRC risk stratification in the average-risk North American population in order to improve screening compliance and to enhance clinical decision making.
    METHODS: In this study, conducted in Malaysia, we evaluated the seven-gene biomarker panel validated in a North American population using blood samples collected from local patients. The panel employs quantitative RT-PCR (qRT-PCR) to analyze gene expression of the seven biomarkers (ANXA3, CLEC4D, TNFAIP6, LMNB1, PRRG4, VNN1 and IL2RB) that are differentially expressed in CRC patients as compared with controls. Blood samples from 210 patients (99 CRC and 111 controls) were collected, and total blood RNA was isolated and subjected to quantitative RT-PCR and data analysis.
    RESULTS: The logistic regression analysis of seven-gene panel has an area under the curve (AUC) of 0.76 (95% confidence interval: 0.70 to 0.82), 77% specificity, 61% sensitivity and 70% accuracy, comparable to the data obtained from the North American investigation of the same biomarker panel.
    CONCLUSIONS: Our results independently confirm the results of the study conducted in North America and demonstrate the ability of the seven biomarker panel to discriminate CRC from controls in blood samples drawn from a Malaysian population.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  14. Abdulamir AS, Hafidh RR, Bakar FA
    Mol. Cancer, 2010;9:249.
    PMID: 20846456 DOI: 10.1186/1476-4598-9-249
    Colorectal cancer (CRC) has long been associated with bacteremia and/or endocarditis by Streptococcus gallolyticus member bacteria (SGMB) but the direct colonization of SGMB along with its molecular carcinogenic role, if any, has not been investigated. We assessed the colonization of SGMB in CRC patients with history of bacteremia (CRC-w/bac) and without history of bacteremia (CRC-wo/bac) by isolating SGMB from feces, mucosal surfaces of colorectum, and colorectal tissues and detecting SGMB DNA, via PCR and in situ hybridization (ISH) assays targeting SodA gene in colorectal tissues. Moreover, mRNA of IL1, IL-8, COX-2, IFN-γ, c-Myc, and Bcl-2 in colorectal tissues of studied groups was assessed via ISH and RT-PCR.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  15. Abdul Murad NA, Othman Z, Khalid M, Abdul Razak Z, Hussain R, Nadesan S, et al.
    Dig Dis Sci, 2012 Nov;57(11):2863-72.
    PMID: 22669205 DOI: 10.1007/s10620-012-2240-2
    BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide with approximately 1 million cases diagnosed annually. In Malaysia, CRC is the second most common cancer in women and ranked first in men. The underlying cause of CRC remains unknown.

    AIMS: The aim of this study was to analyze the mutations in genes involved in CRC including MLH1, MSH2, KRAS, and APC genes.

    METHODS: A total of 76 patients were recruited. We used the polymerase chain reaction-denaturing high-performance liquid chromatography for the detection of mutations in the mismatch repair (MMR) and APC genes and the PCR single-strand conformation polymorphism for screening of the KRAS gene mutations.

    RESULTS: We identified 17 types of missense mutations in 38 out of 76 patients in our patients. Nine mutations were identified in the APC gene, five mutations were detected in the KRAS gene, and two mutations were identified in the MSH2 gene. Only one mutation was identified in MLH1. Out of these 17 mutations, eight mutations (47 %) were predicted to be pathogenic. Seven patients were identified with multiple mutations (3: MSH2 and KRAS, 1: KRAS and APC, 1: MLH1 and APC, 2: APC and APC).

    CONCLUSIONS: We have established the PCR-DHPLC and PCR-SSCP for screening of mutations in CRC patients. This study has given a snapshot of the spectrum of mutations in the four genes that were analyzed. Mutation screening in patients and their family members will help in the early detection of CRC and hence will reduce mortality due to CRC.

    Matched MeSH terms: Colorectal Neoplasms/genetics*
  16. Zahary MN, Kaur G, Abu Hassan MR, Singh H, Naik VR, Ankathil R
    World J Gastroenterol, 2012 Feb 28;18(8):814-20.
    PMID: 22371642 DOI: 10.3748/wjg.v18.i8.814
    To investigate the protein expression profile of mismatch repair (MMR) genes in suspected cases of Lynch syndrome and to characterize the associated germline mutations.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  17. Ahmad Aizat AA, Siti Nurfatimah MS, Aminudin MM, Ankathil R
    World J Gastroenterol, 2013 Jun 21;19(23):3623-8.
    PMID: 23801864 DOI: 10.3748/wjg.v19.i23.3623
    To investigate the risk association of xeroderma pigmentosum group C (XPC) Lys939Gln polymorphism alone and in combination with cigarette smoking on colorectal cancer (CRC) predisposition.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  18. Arul M, Roslani AC, Cheah SH
    In Vitro Cell Dev Biol Anim, 2017 May;53(5):435-447.
    PMID: 28120247 DOI: 10.1007/s11626-016-0126-x
    Tumor heterogeneity may give rise to differential responses to chemotherapy drugs. Therefore, unraveling tumor heterogeneity has an implication for biomarker discovery and cancer therapeutics. To test this phenomenon, we investigated the differential responses of three secondary colorectal cancer cell lines of different origins (HCT116, HT29, and SW620 cells) and four novel primary cell lines obtained from different colorectal cancer patients to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) and explored the differences in gene expression among the primary cell lines in response to exposure to cytotoxic drugs. Cells were exposed to different doses of 5-FU and L-OHP separately or in combinations of equitoxic drug or equimolar drug ratios (median effect of Chou-Talalay principle). Cell viability was assessed using MTT assay and the respective IC50values were determined. Changes in gene expression in primary cell lines after exposure to the same drug doses were compared using real-time PCR array. The sensitivities (IC50) of different cell lines, both secondary and primary, to 5-FU and L-OHP were significantly different, whether in monotherapy or combined treatment. Primary cell lines needed higher doses to reach IC50. There were variations in gene expression among the primary cell lines of different chemosensitivities to the challenge of the same combined dose of 5-FU and L-OHP. The results confirm the heterogeneous nature of colorectal cancer cells from different patient tumors. Studies using primary cancer cells established from patient's tumors rather than secondary cell lines will more closely reflect the actual character of the disease.
    Matched MeSH terms: Colorectal Neoplasms/genetics
  19. Tan SC, Suzairi MS, Aizat AA, Aminudin MM, Nurfatimah MS, Bhavaraju VM, et al.
    Med Oncol, 2013 Dec;30(4):693.
    PMID: 23996241 DOI: 10.1007/s12032-013-0693-6
    The inhibitory protein IκBα, encoded by the NFKBIA gene, plays an important role in regulating the activity of nuclear factor-kappa B, a transcription factor which has been implicated in the initiation and progression of cancers. This study aimed to evaluate the association of NFKBIA -826C>T (rs2233406) and -881A>G (rs3138053) polymorphisms with the risk of sporadic colorectal cancer (CRC) in Malaysian population. A case-control study comprising 474 subjects (237 CRC patients and 237 cancer-free controls) was carried out. The polymorphisms were genotyped from the genomic DNA of the study subjects employing PCR-RFLP, followed by DNA sequencing. The association between the polymorphic genotypes and CRC risk was evaluated by deriving odds ratios (ORs) and 95 % confidence intervals (CIs) using unconditional logistic regression analysis. The two polymorphisms were in complete and perfect linkage disequilibrium (D' = 1.0, r (2) = 1.0). Overall, no statistically significant CRC risk association was found for the polymorphisms (P > 0.05). A similar lack of association was observed when the data were stratified according to ethnicity (P > 0.05). However, stratification by gender revealed a significant inverse association between the heterozygous genotype of the polymorphisms and the risk of CRC among females (OR 0.53, 95 % CI 0.29-0.97, P = 0.04), but not among males (P > 0.05). In conclusion, the heterozygous genotype of the polymorphisms could contribute to a significantly decreased CRC risk among females, but not males, in the Malaysian population.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  20. Hiew MSY, Cheng HP, Huang CJ, Chong KY, Cheong SK, Choo KB, et al.
    J Biomed Sci, 2018 Jul 19;25(1):57.
    PMID: 30025541 DOI: 10.1186/s12929-018-0461-1
    BACKGROUND: Induced pluripotency in cancer cells by ectopic expression of pluripotency-regulating factors may be used for disease modeling of cancers. MicroRNAs (miRNAs) are negative regulators of gene expression that play important role in reprogramming somatic cells. However, studies on the miRNA expression profile and the expression patterns of the mesenchymal-epithelial transition (MET)/epithelial-mesenchymal transition (EMT) genes in induced pluripotent cancer (iPC) cells are lacking.

    METHODS: iPC clones were generated from two colorectal cancer (CRC) cell lines by retroviral transduction of the Yamanaka factors. The iPC clones obtained were characterized by morphology, expression of pluripotency markers and the ability to undergo in vitro tri-lineage differentiation. Genome-wide miRNA profiles of the iPC cells were obtained by microarray analysis and bioinformatics interrogation. Gene expression was done by real-time RT-PCR and immuno-staining; MET/EMT protein levels were determined by western blot analysis.

    RESULTS: The CRC-iPC cells showed embryonic stem cell-like features and tri-lineage differentiation abilities. The spontaneously-differentiated post-iPC cells obtained were highly similar to the parental CRC cells. However, down-regulated pluripotency gene expression and failure to form teratoma indicated that the CRC-iPC cells had only attained partial pluripotency. The CRC-iPC cells shared similarities in the genome-wide miRNA expression profiles of both cancer and pluripotent embryonic stem cells. One hundred and two differentially-expressed miRNAs were identified in the CRC-iPC cells, which were predicted by bioinformatics analysis be closely involved in regulating cellular pluripotency and the expression of the MET/EMT genes, possibly via the phosphatidylinositol-3 kinases-protein kinase B (PI3K-Akt) and transforming growth factor beta (TGF-β) signaling pathways. Irregular and inconsistent expression patterns of the EMT vimentin and Snai1 and MET E-cadherin and occludin proteins were observed in the four CRC-iPC clones analyzed, which suggested an epithelial/mesenchymal hybrid phenotype in the partially reprogrammed CRC cells. MET/EMT gene expression was also generally reversed on re-differentiation, also suggesting epigenetic regulation.

    CONCLUSIONS: Our data support the elite model for cancer cell-reprogramming in which only a selected subset of cancer may be fully reprogrammed; partial cancer cell reprogramming may also elicit an epithelial-mesenchymal mixed phenotype, and highlight opportunities and challenges in cancer cell-reprogramming.

    Matched MeSH terms: Colorectal Neoplasms/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links