Displaying all 5 publications

Abstract:
Sort:
  1. Chen Y, Chen K, Zhu W, Chen J, Huang Z
    Malays J Pathol, 2024 Aug;46(2):279-286.
    PMID: 39207004
    INTRODUCTION: Diabetic retinopathy is characterised by retinal vascular impairment. A number of aberrant microRNAs (miRNAs) have a role in the pathophysiology of vascular dysfunction. However, the relevance of miR-424 in retinal vascular endothelial cell dysfunction during hyperglycemia stress remains unknown. The purpose of this study is to investigate this issue.

    MATERIALS AND METHODS: Rhesus macaque choroid retinal endothelial cell line (RF/6A) cells were cultivated in normal glucose (NG) and high glucose (HG) conditions. The mRNA expression of miR-424 and Cyclin D1 (CCND1) was quantified using qPCR, and the protein quantity of CCND1 was detected using Western Blot. miR-424 mimics, miR-424 inhibitors, miR-424 inhibitor+ siRNA-CCND1 or vehicle molecules were transfected into RF/6A cells. MTT test was used to assess cell proliferation, and flow cytometric analysis was used to assess cell cycle. The interaction between miR-424 and CCND1 was predicted using bioinformatics and validated using dual luciferase reporter analysis.

    RESULTS: miR-424 was up-regulated, and cell viability was reduced in HG compared to NG. By reversing the expression of miR-424 in certain situations, the phenotypes can be changed. CCND1 has been identified as a miR-424 target gene, and it may be regulated at the transcriptional and translational levels. Manipulation of silencing CCND1 can counteract the effect of transfecting miR-424 inhibitor into RF/6A cells under HG such as proliferation stimulation.

    CONCLUSIONS: Our findings indicate that miR-424 plays an important role in hyperglycemia induced ARPE-19 cells damage, and it could be a new therapeutic target for DR by preventing retinal vascular cells from HG-induced injury.

    Matched MeSH terms: Diabetic Retinopathy/metabolism
  2. Amil-Bangsa NH, Mohd-Ali B, Ishak B, Abdul-Aziz CNN, Ngah NF, Hashim H, et al.
    Optom Vis Sci, 2019 12;96(12):934-939.
    PMID: 31834153 DOI: 10.1097/OPX.0000000000001456
    SIGNIFICANCE: Total protein concentration (TPC) and tumor necrosis factor α (TNF-α) concentration in tears are correlated with severity of retinopathy. However, minimal data are available in the literature for investigating tear TPC and TNF-α concentrations in Asian individuals with different severity of nonproliferative diabetic retinopathy (NPDR).

    PURPOSE: This study evaluated differences of TPC and TNF-α concentrations in tears at different severity of NPDR among participants with diabetes in comparison with normal participants.

    METHODS: A total of 75 participants were categorized based on Early Treatment for Diabetic Retinopathy Study scale, with 15 participants representing each group, namely, normal, diabetes without retinopathy, mild NPDR, moderate NPDR, and severe NPDR. All participants were screened using McMonnies questionnaire. Refraction was conducted subjectively. Visual acuity was measured using a LogMAR chart. Twenty-five microliters of basal tears was collected using glass capillary tubes. Total protein concentration and TNF-α concentrations were determined using Bradford assay and enzyme-linked immunosorbent assay, respectively.

    RESULTS: Mean ± SD age of participants (n = 75) was 57.88 ± 4.71 years, and participants scored equally in McMonnies questionnaire (P = .90). Mean visual acuity was significantly different in severe NPDR (P = .003). Mean tear TPC was significantly lower, and mean tear TNF-α concentration was significantly higher in moderate and severe NPDR (P < .001). Mean ± SD tear TPC and TNF-α concentrations for normal were 7.10 ± 1.53 and 1.39 ± 0.24 pg/mL; for diabetes without retinopathy, 6.37 ± 1.65 and 1.53 ± 0.27 pg/mL; for mild NPDR, 6.32 ± 2.05 and 1.60 ± 0.21 pg/mL; for moderate NPDR, 3.88 ± 1.38 and 1.99 ± 0.05 pg/mL; and for severe NPDR, 3.64 ± 1.26 and 2.21 ± 0.04 pg/mL, respectively. Tear TPC and TNF-α concentrations were significantly correlated (r = -0.50, P < .0001). Visual acuity was significantly correlated with tear TPC (r = -0.236, P = .04) and TNF-α concentrations (r = 0.432, P < .0001).

    CONCLUSIONS: This cross-sectional study identified differences in tear TPC and TNF-α concentrations with increasing severity of NPDR.

    Matched MeSH terms: Diabetic Retinopathy/metabolism*
  3. Abougalambou SS, Abougalambou AS
    Diabetes Metab Syndr, 2015 Apr-Jun;9(2):98-103.
    PMID: 25470640 DOI: 10.1016/j.dsx.2014.04.019
    BACKGROUND: Diabetic retinopathy (DR) is the leading cause of blindness in the United States and it is the leading cause of new cases of blindness in adults aged 20-74. It is estimated that about 20% of patients with type 2 DM have evidence of diabetic retinopathy at diagnosis with diabetes.
    OBJECTIVE: To evaluate the prevalence of DR and to determine risk factors related to diabetic retinopathy among type 2 diabetes patients attending endocrinology clinics at Hospital Universiti Sains Malaysia (HUSM).
    SUBJECTS AND METHODS: The study design was observational prospective longitudinal follow-up study, the study was conducted with sample of 1077 type 2 diabetes mellitus outpatient recruited via attended the diabetes clinics at HUSM. Diagnosis of retinopathy is based on finding the diagnostic signs of retinopathy on eye exams by fundoscopy. Logistic regression analysis was used to assess the independent variables that affect the development of retinopathy.
    RESULTS: The prevalence of retinopathy was 39.3%. It has been noticed from this study findings, that the progression of retinopathy is been influenced by five independent risk factors such as duration of diabetes, presence neuropathy, total cholesterol at second and third visit and createnine clearance.
    CONCLUSION: DR is highly prevalent among type 2 DM. The progression of retinopathy is been influenced by five independent risk factors such as duration of diabetes, presence neuropathy, total cholesterol at second and third visit and createnine clearance. DR is a serious diabetic complication and public health strategies are required in order to reduce its risk factors and decrease its prevalence.
    KEYWORDS: Prevalence; Retinopathy; Risk factors; Type 2 diabetes mellitus
    Study site: Endocrinology clinics, Hospital Universiti Sains Malaysia (HUSM), Kelantan, Malaysia
    Matched MeSH terms: Diabetic Retinopathy/metabolism
  4. Ng ZX, Kuppusamy UR, Tajunisah I, Fong KC, Chua KH
    J Diabetes Complications, 2012 Sep-Oct;26(5):388-92.
    PMID: 22795339 DOI: 10.1016/j.jdiacomp.2012.05.014
    PURPOSE:
    In this study, we aimed to investigate the possible association between SLC2A1 26177A/G polymorphism and diabetic retinopathy (DR) in Malaysian patients with type 2 diabetes.

    METHODS:
    Genomic DNA was extracted from 211 Malaysian type 2 diabetic patients (100 without retinopathy [DNR], 111 with retinopathy) and 165 healthy controls. A high resolution melting assay developed in this study was used to detect SLC2A1 26177A/G polymorphism followed by statistical analysis.

    RESULTS:
    A statistically significant difference in 26177G minor allele frequency between healthy controls (19.7 %) and total patient group (26.1 %) (p<0.05, Odd ratio = 1.437, 95% Confidence interval = 1.015-2.035) as well as between healthy controls (19.7 %) and DNR patients (27.5%) (p<0.05, Odd ratio = 1.546, 95% Confidence interval = 1.024-2.336) was shown in this study. However, when compared between DR and DNR patients, there was no significant difference (p>0.05).

    CONCLUSIONS:
    This is the first study which shows that SLC2A1 26177G allele is associated with type 2 diabetes in Malaysian population but not with DR.
    Matched MeSH terms: Diabetic Retinopathy/metabolism
  5. Ng ZX, Kuppusamy UR, Iqbal T, Chua KH
    Gene, 2013 Jun 1;521(2):227-33.
    PMID: 23545311 DOI: 10.1016/j.gene.2013.03.062
    Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with diabetic retinopathy (DR). However, the mechanism on how it affects the disease development is still unclear.
    Matched MeSH terms: Diabetic Retinopathy/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links