Displaying publications 1 - 20 of 118 in total

Abstract:
Sort:
  1. Azuma H, Okamoto M, Oku Y, Kamiya M
    Parasitol Res, 1995;81(2):103-8.
    PMID: 7731915
    The intraspecific variation of four laboratory-reared isolates of Taenia taeniaformis the SRN and KRN isolates from Norway rats, Rattus norvegicus, captured in Japan and Malaysia, respectively; the BMM isolated from a house mouse, Mus musculus, captured in Belgium; and the ACR isolate from a gray red-backed vole, Clethrionomys rufocanus bedfordiae, captured in Japan was examined by various criteria. Eggs of each of the four isolates were orally inoculated into several species of intermediate host. They were most infective to the rodent species from which the original metacestode of each isolate had been isolated in the field, and only the ACR isolate was infective to the gray red-backed vole. Although little difference was found between the SRN, KRN, and BMM isolates by the other criteria, including the morphology of rostellar hooks, the protein composition of the metacestode, and restriction endonuclease analysis of DNA, the ACR isolate was clearly different from the others. It was considered that the ACR isolate was independent as a strain distinct from the other three isolates.
    Matched MeSH terms: DNA, Protozoan/analysis*
  2. Singh B, Cox-Singh J, Miller AO, Abdullah MS, Snounou G, Rahman HA
    Trans R Soc Trop Med Hyg, 1996 9 1;90(5):519-21.
    PMID: 8944260
    A modified nested polymerase chain reaction (PCR) method for detection of Plasmodium falciparum, P. vivax and P. malariae was combined with a simple blood collection and deoxyribonucleic acid (DNA) extraction method and evaluated in Malaysia. Finger-prick blood samples from 46 hospital patients and 120 individuals living in malaria endemic areas were spotted on filter papers and dried. The simple Chelex method was used to prepare DNA templates for the nested PCR assay. Higher malaria prevalence rates for both clinical (78.2%) and field samples (30.8%) were obtained with the nested PCR method than by microscopy (76.1% and 27.5%, respectively). Nested PCR was more sensitive than microscopy in detecting mixed P. falciparum and P. vivax infections, detected 5 more malaria samples than microscopy on the first round of microscopical examination, and detected malaria in 3 microscopically negative samples. Nested PCR failed to detect parasite DNA in 2 microscopically positive samples, an overall sensitivity of 97.4% compared to microscopy. The nested PCR method, when coupled with simple dried blood spot sampling, is a useful tool for collecting accurate malaria epidemiological data, particularly in remote regions of the world.
    Matched MeSH terms: DNA, Protozoan/analysis
  3. Singh B
    Int J Parasitol, 1997 Oct;27(10):1135-45.
    PMID: 9394184
    Direct microscopy is widely used for the diagnosis of parasitic infections although it often requires an experienced microscopist for accurate diagnosis, is labour intensive and not very sensitive. In order to overcome some of these shortcomings, molecular or nucleic acid-based diagnostic methods for parasitic infections have been developed over the past 12 years. The parasites which have been studied with these techniques include the human Plasmodia, Leishmania, the trypanosomes, Toxoplasma gondii, Entamoeba histolytica, Giardia, Trichomonas vaginalis, Cryptosporidium parvum, Taenia, Echinococcus, Brugia malayi, Wuchereria bancrofti, Loa loa and Onchocerca volvulus. Early methods, which involved hybridisation of specific probes (radiolabelled and non-radiolabelled) to target deoxyribonucleic acid (DNA), have been replaced by more sensitive polymerase chain reaction (PCR)-based assays. Other methods, such as PCR-hybridisation assays, PCR-restriction fragment length polymorphism (PCR-RFLP) assays and random amplified polymorphic DNA (RAPD) analysis have also proved valuable for epidemiological studies of parasites. The general principles and development of DNA-based methods for diagnosis and epidemiological studies will be described, with particular reference to malaria. These methods will probably not replace current methods for routine diagnosis of parasitic infections in developing countries where parasitic diseases are endemic, due to high costs. However, they will be extremely useful for genotyping parasite strains and vectors, and for accurate parasite detection in both humans and vectors during epidemiological studies.
    Matched MeSH terms: DNA, Protozoan/genetics; DNA, Protozoan/isolation & purification
  4. Cox-Singh J, Mahayet S, Abdullah MS, Singh B
    Int J Parasitol, 1997 Dec;27(12):1575-7.
    PMID: 9467744
    Malaria remains a disease of underdeveloped and remote regions of the world. The application of polymerase chain reaction (PCR) technology to malaria epidemiology has the potential for increasing our knowledge and understanding of this disease. In order to study malaria in all geographical locations it is important that specimen collection and DNA extraction for PCR be kept simple. Here we report a method for extracting DNA from dried blood spots on filter paper which is capable of detecting one Plasmodium falciparum and two Plasmodium vivax parasites/microliter of whole blood by nested PCR without compromising the simplicity of specimen collection or DNA extraction.
    Matched MeSH terms: DNA, Protozoan/isolation & purification
  5. Kissinger JC, Collins WE, Li J, McCutchan TF
    J Parasitol, 1998 Apr;84(2):278-82.
    PMID: 9576499
    Plasmodium inui (Halberstaedter and von Prowazek, 1907), a malarial parasite of Old World monkeys that occurs in isolated pockets throughout the Celebes, Indonesia, Malaysia, and the Philippines, has traditionally been considered to be related more closely to Plasmodium malariae of humans (and its primate counterpart Plasmodium brasilianum), than to other primate Plasmodium species. This inference was made in part because of the similarities in the periodicities or duration of the asexual cycle in the blood, the extended sporogonic cycle, and the longer period of time for development of the pre-erythrocytic stages in the liver. Both P. inui and P. malariae have quartan (72 hr) periodicities associated with their asexual cycle, whereas other primate malarias, such as Plasmodium fragile and Plasmodium cynomolgi, are associated with tertian periodicities (48 hr), and Plasmodiumn knowlesi, with a quotidian (24 hr) periodicity. Phylogenetic analyses of portions of orthologous small subunit ribosomal genes reveal that P. inui is actually more closely related to the Plasmodium species of the "vivax-type" lineage than to P. malariae. Ribosomal sequence analysis of many different, geographically isolated, antigenically distinct P. inui isolates reveals that the isolates are nearly identical in sequence and thus members of the same species.
    Matched MeSH terms: DNA, Protozoan/chemistry
  6. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA
    Am J Trop Med Hyg, 1999 Apr;60(4):687-92.
    PMID: 10348249
    A nested polymerase chain reaction (PCR) assay that uses Plasmodium genus-specific primers for the initial PCR (nest 1) amplification and either genus- or species-specific primers for the nest 2 amplifications was tested on laboratory and field samples. With in vitro cultured Plasmodium falciparum-infected blood samples, it was capable of detecting six parasites/microl of blood using DNA prepared from 25-microl blood spots on filter paper. The assay was evaluated on fingerprick blood samples collected on filter paper from 129 individuals living in a malaria-endemic area in Malaysia. Malaria prevalence by genus-specific nested PCR was 35.6% (46 of 129) compared with 28.7% (37 of 129) by microscopy. The nested PCR detected seven more malaria samples than microscopy in the first round of microscopic examination, malaria in three microscopically negative samples, six double infections identified as single infections by microscopy and one triple infection identified as a double infection by microscopy. The nested PCR assay described is a sensitive technique for collecting accurate malaria epidemiologic data. When coupled with simple blood spot sampling, it is particularly useful for screening communities in remote regions of the world.
    Matched MeSH terms: DNA, Protozoan/analysis
  7. Chansiri K, Kawazu S, Kamio T, Terada Y, Fujisaki K, Philippe H, et al.
    Vet Parasitol, 1999 Jun 15;83(2):99-105.
    PMID: 10392966
    Classification of Theileria parasites of south-east Asian countries is still ambiguous due to the lack of basic studies, especially their molecular genetic information. In this study, we included 6 known species and 14 unclassified Theileria parasite isolates: Theileria annulata, Theileria parva, Theileria taurotragi, Theileria sergenti, Theileria buffeli, Theileria types Sable, Theileria types A, B, B1, B2, C, D, E, F, G, G1, Theileria type Medan (Indonesia), Theileria type Ipoh (Malaysia) and Theileria type Thong Song (Thailand). Small subunit ribosomal RNA (srRNA) nucleotide sequence data were collected by PCR, cloning and dideoxy sequencing. The srRNA nucleotide sequences were aligned and analyzed by distance methods, maximum parsimony algorithms and maximum likelihood methods to construct phylogenetic trees. Bootstrap analysis was used to test the strength of the different phylogenetic reconstructions. The data indicated that all of the tree-building methods gave very similar results. This study identified two groups of Theileria, the pathogenic and benign groups, which are strongly supported by bootstrap analysis. The analysis also indicated that three subgroups (A, B and C) were generated within the benign Theileria group whereas the classification of Theileria type D and Thong Song is questionable. However, more basic information such as life cycle differences, vectors, modes of transmission, virulent and genetic/sexual compatability is essential for clearer taxonomic definition of the benign Theileria parasites.
    Matched MeSH terms: DNA, Protozoan/chemistry
  8. Canning EU, Curry A, Cheney S, Lafranchi-Tristem NJ, Haque MA
    Parasitology, 1999 Sep;119 ( Pt 3):273-86.
    PMID: 10503253
    The microsporidian genus Nosema is characterized by development in direct control with host cell cytoplasm, diplokaryotic nuclei throughout development and disporous sporogony. The genus Vairimorpha exhibits the same features plus an octoporous sporogony producing uninucleate spores in a sporophorous vesicle. A microsporidium from diamondback moth, Plutella xylostella, falls between Nosema and Vairimorpha in that it initiates but fails to complete the octosporous sequence in this host. The name Vairimorpha imperfecta n.sp. is proposed. Merogony is mainly by formation of buds from multinucleate meronts, the buds remaining attached in chains. Diplokaryotic spores measure 4.3 x 2.0 microns (fresh) and have 15.5 coils of the polar tube in 1 rank. The octosporous sporogony is aborted owing to irregular formation of nuclear spindles, incomplete cytoplasmic fission and bizarre deposition of electron-dense episporontal secretions. Phylogenetic analyses of the sequences of the small subunit rRNA genes of V. imperfecta and of several Nosema and Vairimorpha spp. place V. imperfecta in a clade with Nosema spp. from Lepidoptera rather than in the clade containing the more typical species of Vairimorpha. It is suggested that the ancestors of the Vairimorpha/Nosema complex of species exhibited both disporous and octosporous sporogonies, as does the type species of Vairimorpha, Vairimorpha necatrix. It would follow that true Nosema spp. have lost the ability to express an octosporous sequence and that V. imperfecta is in the process of losing it. It is proposed that the genera Nosema and Vairimorpha be placed in the same family Nosematidae Labbé 1899, rather than in separate families and orders as at present.
    Matched MeSH terms: DNA, Protozoan/chemistry
  9. Vythilingam I, Nitiavathy K, Yi P, Bakotee B, Hugo B, Singh B, et al.
    PMID: 10928352
    Dried Anopheles farauti mosquitos caught in Solomon Islands in 1990 were examined for malaria sporozoites by ELISA and nested polymerase chain reaction (PCR). Only heads and thoraces were used. Plasmodium genus-specific nested PCR amplifications were carried out on all samples. Of the 402 pools of mosquitos that were processed, 30 were positive for malaria. Nest 1 products of positive samples were subjected to further PCR amplifications with species-specific primers for P. falciparum and P. vivax. Twenty pools were positive for P. vivax by PCR while only 7 were positive by ELISA. For P. falciparum 2 pools were positive by both ELISA and PCR, and one of these was a pool which was positive for P. vivax by PCR and ELISA. Thus the sensitivity of PCR for P. vivax was 100% while the specificity was 96.7%. For P. falciparum the sensitivity and specificity were 100%. The PCR technique is highly sensitive and can be used on dried mosquitos which makes it a valuable tool for determining sporozoite rates of mosquitos, even in remote areas.
    Matched MeSH terms: DNA, Protozoan/analysis
  10. Horn M, Fritsche TR, Linner T, Gautom RK, Harzenetter MD, Wagner M
    Int J Syst Evol Microbiol, 2002 Mar;52(Pt 2):599-605.
    PMID: 11931173 DOI: 10.1099/00207713-52-2-599
    All obligate bacterial endosymbionts of free-living amoebae currently described are affiliated with the alpha-Proteobacteria, the Chlamydiales or the phylum Cytophaga-Flavobacterium-Bacteroides. Here, six rod-shaped gram-negative obligate bacterial endosymbionts of clinical and environmental isolates of Acanthamoeba spp. from the USA and Malaysia are reported. Comparative 16S rDNA sequence analysis demonstrated that these endosymbionts form a novel, monophyletic lineage within the beta-Proteobacteria, showing less than 90% sequence similarity to all other recognized members of this subclass. 23S rDNA sequence analysis of two symbionts confirmed this affiliation and revealed the presence of uncommon putative intervening sequences of 146 bp within helix-25 that shared no sequence homology to any other bacterial rDNA. In addition, the 23S rRNA of these endosymbionts displayed one polymorphism at the target site of oligonucleotide probe BET42a that is conserved in all other sequenced beta-Proteobacteria. Intra-cytoplasmatic localization of the endosymbionts within the amoebal host cells was confirmed by electron microscopy and fluorescence in situ hybridization with a specific 16S rRNA-targeted oligonucleotide probe. Based on these findings, the provisional name 'Candidatus Procabacter acanthamoebae' is proposed for classification of a representative of the six endosymbionts of Acanthamoeba spp. studied in this report. Comparative 18S rDNA sequence analysis of the Acanthamoeba host cells revealed their membership with either Acanthamoeba 18S rDNA sequence type T5 (Acanthamoeba lenticulata) or sequence type T4, which comprises the majority of all Acanthamoeba isolates.
    Matched MeSH terms: DNA, Protozoan/chemistry
  11. Chong SP, Jangi MS, Wan KL
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):123-8.
    PMID: 12186768
    VCP (Valosin-Containing Protein), a member of the AAA (ATPases Associated to a variety of cellular Activities) family of proteins, possesses a duplicated highly conserved ATPase domain. An expressed sequence tag (EST), representing a clone from the Eimeria tenella merozoite cDNA library, was found to have high similarity to VCP genes from other organisms. A complete sequence derived from the corresponding clone (designated eth060) shows amino acid identity of 42-62% with other members of the VCP subfamily. Sequence analysis identified a putative ATPase domain in the eth060 sequence. This domain was PCR-amplified using gene-specific primers and cloned into a pBAD/Thio-TOPO expression vector. Expression in Escherichia coli demonstrated that the putative ATPase domain, which consists of 414 amino acid residues, produced a fusion protein of approximately 60 kDa in size.
    Matched MeSH terms: DNA, Protozoan/genetics
  12. Yambot AV, Song YL, Sung HH
    Dis Aquat Organ, 2003 Mar 31;54(2):147-56.
    PMID: 12747640
    The ciliated protozoan parasite Cryptocaryon irritans infecting marine fishes in Taiwan is described. Developmental characteristics and sequences of the ribosomal DNA regions such as part of 18 S, the entire first internal transcribed spacer, and part of 5.8 S of various Taiwan isolates of C. irritans were investigated. A total of 5 isolates was obtained from different fish-host species and localities, the majority from cultured fish species. C. irritans from Taiwan is able to shift its developmental characteristics, i.e. from non-adherent to adherent tomonts, from individualistic to aggregate-forming tomonts, from infection of the gills only to infection of the gills and body. Thus, it is not possible to classify strains of C. irritans on the basis of these parameters. Premature tomonts that developed from dead fishes were able to produce theronts that could infect fish host. Isolates from Pingtung and the USA had identical nucleotide sequences while an isolate from Malaysia was identical to an Israel isolate. Percentage variation among pairs of Taiwan isolates showed a higher degree of variation than isolate sequences listed in GenBank. Sequence analysis revealed highly aberrant isolates in Taiwan, and a phylogenetic tree distinguished a marine and a low-salinity variant. C. irritans from marine fishes in Taiwan, therefore, display some characteristics not previously reported. Since manipulation of salinity in brackishwater ponds and marine cage sites is not feasible, there is a need to develop new strategies for the control and prevention of cryptocaryoniasis.
    Matched MeSH terms: DNA, Protozoan/genetics; DNA, Protozoan/chemistry*
  13. Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al.
    Lancet, 2004 Mar 27;363(9414):1017-24.
    PMID: 15051281
    About a fifth of malaria cases in 1999 for the Kapit division of Malaysian Borneo had routinely been identified by microscopy as Plasmodium malariae, although these infections appeared atypical and a nested PCR assay failed to identify P malariae DNA. We aimed to investigate whether such infections could be attributable to a variant form of P malariae or a newly emergent Plasmodium species.
    Matched MeSH terms: DNA, Protozoan/isolation & purification
  14. Cheah TS, Mattsson JG, Zaini M, Sani RA, Jakubek EB, Uggla A, et al.
    Vet Parasitol, 2004 Dec 15;126(3):263-9.
    PMID: 15567590
    In order to attempt isolate the protozoan parasite Neospora caninum, an N. caninum seropositive pregnant Sahiwal Friesian cross heifer from a large-scale dairy farm in Malaysia was kept for observation until parturition at the Veterinary Research Institute, Ipoh. The heifer gave birth to a female calf that was weak, underweight and unable to rise. Precolostral serum from the calf had an N. caninum indirect fluorescent antibody test titre of 1:3200. It died 12 h after birth and necropsy was performed. Brain homogenate from the calf was inoculated into 10 BALB/c mice that were kept for 3 months after which brain tissue from the mice was inoculated onto 24 h fresh monolayer Vero cell lines. The cell cultures were examined daily until growth of intracellular protozoa was observed. DNA of the organisms from the cell cultures was analyzed by PCR and DNA sequencing. DNA fragments of the expected size were amplified from the isolate using N. caninum-specific primers, and sequence analysis of ITS1 clearly identified the isolate as N. caninum. This is the first successful isolation of N. caninum from a bovine in Malaysia, and the isolate is designated Nc-MalB1.
    Matched MeSH terms: DNA, Protozoan/isolation & purification
  15. Tay ST, Chai HC, Na SL, Hamimah H, Rohani MY, Soo-Hoo TS
    Mycopathologia, 2005 Jun;159(4):509-13.
    PMID: 15983736
    The occurrence of Cryptococcus neoformans in bird excreta in Klang valley, Malaysia was determined in this study. Of 544 samples of bird excreta collected from a local zoo, pet shops and public areas, 20 strains of C. neoformans were isolated. All C. neoformans strains were serotype A and thus identified as C. neoformans variety grubii. All did not produce color changes on canavanine-glycine-bromothymol blue agar. All were of alpha-mating types, as determined by a pheromone-specific PCR assay. The antifungal susceptibility testing using agar diffusion method Neo-sensitabs showed that all were susceptible to amphotericin B, fluconazole and itraconazole.
    Matched MeSH terms: DNA, Protozoan/genetics; DNA, Protozoan/chemistry
  16. Latifah I, Teoh KY, Wan KL, Rahmah M, Normaznah Y, Rohani A
    Malays J Pathol, 2005 Dec;27(2):83-9.
    PMID: 17191390
    Giardia duodenalis is an intestinal parasite that causes diarrhoea and malabsorption in children. The parasite also infects AIDS patients with a weak immune system. A study was carried out on six local isolates of Giardia duodenalis (110, 7304, 6304, M007, 2002 and 6307) from faeces of Orang Asli patients admitted to the Gombak Hospital. WB, a reference pathogenic strain from human and G. muris from a wild mouse, were commercially obtained from the American Type Culture Collection (ATCC). All the isolates were cultured axenically in TYI-S-33 medium. Two sets of primers were used for the techniques: primers LP1 and RP1 and primers LP2 and RP2. The sets of primers amplified giardine gene of 171 bp and 218 bp in sizes respectively. The study showed that the two sets of primers could detect G. duodenalis to the genus and species level specifically.
    Matched MeSH terms: DNA, Protozoan/analysis*
  17. Tan TC, Suresh KG, Thong KL, Smith HV
    Parasitol Res, 2006 Sep;99(4):459-65.
    PMID: 16628457
    Genomic DNA from 16 Blastocystis hominis isolates comprising of eight asymptomatic isolates (A1-A8) and eight symptomatic isolates (S1-S8) was amplified by arbitrarily primed polymerase chain reaction (AP-PCR) using 38 arbitrary 10-mer primers. Six primers (A10, B5, C20, D1, F6, and F10) generated reproducible DNA fingerprints. AP-PCR amplification revealed similar DNA fingerprints among all symptomatic isolates (S1-S8) with common bands at 850 bp using primer A10, 920 bp using primer B5, and 1.3 kbp using primer D1. Isolates A1, A3, A4, A5, A6, and A7 showed similar DNA banding patterns and all asymptomatic isolates (A1-A8) shared a major band at 1 kbp using primer B5. Isolates A2 and A8 showed distinct DNA banding patterns that differed from the remainder of the isolates. The results of the phylogenetic analyses showed that all symptomatic isolates (S1-S8) formed a clade with >70% similarity among the isolates and which were clearly separate from asymptomatic isolates A1, A3, A4, A5, A6, and A7. Asymptomatic isolates A2 and A8 formed two distinct and separate clades. AP-PCR revealed higher genetic variability within the asymptomatic isolates than within the symptomatic isolates. The present study suggests that AP-PCR can be a valuable method for differentiating between isolates of B. hominis and our results support the hypothesis that our asymptomatic and symptomatic B. hominis isolates may represent two different strains/species with varying pathogenic potential.
    Matched MeSH terms: DNA, Protozoan/genetics*
  18. Latifah I, Teoh Ky, Wan KL, Normaznah Y, Rahmah M
    Malays J Pathol, 2007 Jun;29(1):25-31.
    PMID: 19105325 MyJurnal
    Giardia duodenalis causes diarrhoea and malabsorption. The objectives of the study were to detect local isolates of G. doudenalis by polymerase chain reaction (PCR) and to determine their restriction fragment length polymorphisms (RFLP). G. doudenalis isolated from stools of patients from Hospital Orang Asli Gombak were cultured axenically using TYI-S-33 medium with 10% foetal calf serum. The commercially designed primer-pair 432/433 was used to amplify a 0.52 kb segment known to encode the homologous cysteine-rich trophozoite surface antigen (tsp11 and tsa417). Results showed that the primer-pair 432/433 could amplify the target region of the local isolates. RFLP study on the identical isolates showed that all the restriction enzymes tested ( HindIII, ClaI, PstI and Kpn) gave a banding pattern similar to that of the WB strain a reference pathogenic strain from human. The reference pathogenic strain were commercially obtained from the American Type Culture Collection (ATCC).
    Matched MeSH terms: DNA, Protozoan/analysis; DNA, Protozoan/genetics; DNA, Protozoan/isolation & purification
  19. Init I, Foead AL, Fong MY, Yamazaki H, Rohela M, Yong HS, et al.
    PMID: 18613539
    Genomic DNA of Blastocystis isolates released into 0.1% Triton X-100 was suitable for amplification and yielded similar results as the genomic DNA extracted with standard kit. The specific B. hominis primers (BH1: GCT TAT CTG GTT GAT CCT GCC AGT and BH2: TGA TCC TTC CGC AGG TTC ACC TAC A) successfully produced the PCR product of about 1,770 bp with all the 7 Blastocystis isolates tested. The restriction fragment length polymorphism (RFLP) patterns yielded by 13 out of 25 restriction endonucleases showed that the 7 isolates could be grouped into 4 subgroups: subgroup-1 consisted of isolate C; subgroup-2 of isolates H4 and H7; subgroup-3 of isolates KP1, Y51 and M12; and subgroup-4 of isolate 27805. The differences between subgroups manifested as clear-cut RFLP patterns. A common band of 230 bp was revealed by Eco R1 in all the Blastocystis isolates tested. The band of about 180 bp was revealed by Alu I, differentiated symptomatic from asymptomatic isolates of this parasite, and might indicate the pathogenicity of this parasite.
    Matched MeSH terms: DNA, Protozoan/analysis
  20. Olival KJ, Stiner EO, Perkins SL
    J Parasitol, 2007 Dec;93(6):1538-40.
    PMID: 18314711 DOI: 10.1645/GE-1208.1
    Three species of flying fox (Pteropus hypomelanus, P. vampyrus, and P. lylei) from Malaysia and Vietnam were screened for apicomplexan parasites by thin blood smears and polymerase chain reaction. Only 1 of 16 bats sampled from 3 localities in southeast Asia was found to be infected (P. hypomelanus from Pulau Pangkor, Malaysia). We observed micro- and macrogametocytes, with morphology consistent with Hepatocystis sp. parasites, using light microscopy. Phylogenetic analysis of the cytochrome b gene showed that the parasite from P. hypomelanus groups with 2 published sequences from Hepatocystis spp., including one from Cynopterus brachyotis, another fruit bat in the Pteropodidae.
    Matched MeSH terms: DNA, Protozoan/blood; DNA, Protozoan/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links