Displaying all 7 publications

Abstract:
Sort:
  1. Moey LH, Abdul Azize NA, Yakob Y, Leong HY, Keng WT, Chen BC, et al.
    Pediatr Neonatol, 2018 08;59(4):397-403.
    PMID: 29203193 DOI: 10.1016/j.pedneo.2017.11.006
    BACKGROUND: Fructose-1,6-bisphosphatase (FBPase) deficiency is a rare autosomal recessive inborn error of gluconeogenesis. We reported the clinical findings and molecular genetic data in seven Malaysian patients with FBPase deficiency.

    METHODS: All patients diagnosed with FBPase deficiency from 2010 to 2015 were included in this study. Their clinical and laboratory data were collected retrospectively.

    RESULTS: All the patients presented with recurrent episodes of hypoglycemia, metabolic acidosis, hyperlactacidemia and hepatomegaly. All of them had the first metabolic decompensation prior to 2 years old. The common triggering factors were vomiting and infection. Biallelic mutations in FBP1 gene (MIM*611570) were identified in all seven patients confirming the diagnosis of FBPase deficiency. In four patients, genetic study was prompted by detection of glycerol or glycerol-3-phosphate in urine organic acids analysis. One patient also had pseudo-hypertriglyceridemia. Seven different mutations were identified in FBP1, among them four mutations were new: three point deletions (c.392delT, c.603delG and c.704delC) and one splice site mutation (c.568-2A > C). All four new mutations were predicted to be damaging by in silico analysis. One patient presented in the neonatal period and succumbed due to sepsis and multi-organ failure. Among six survivors (current age ranged from 4 to 27 years), four have normal growth and cognitive development. One patient had short stature and another had neurological deficit following status epilepticus due to profound hypoglycemia.

    CONCLUSION: FBPase deficiency needs to be considered in any children with recurrent hypoglycemia and metabolic acidosis. Our study expands the spectrum of FBP1 gene mutations.

    Matched MeSH terms: DNA Helicases/genetics*
  2. Lee YL, Toh L, Yap F
    J ASEAN Fed Endocr Soc, 2020;35(1):122-124.
    PMID: 33442180 DOI: 10.15605/jafes.035.01.21
    A 26-year-old female presented to the paediatric clinic at 11 years of age with poor growth. The detection of delayed puberty, anosmia, coloboma and hearing impairment led to a diagnosis of CHARGE syndrome. This was confirmed by a heterogenous de novo pathogenic variant c.6955C >T:p.(Arg2319Cys) detected in the CHD7 gene. Detailed assessment, including olfaction, ophthalmic and auditory examination should be part of the evaluation framework in children with delayed growth and puberty.
    Matched MeSH terms: DNA Helicases
  3. Wilson BT, Stark Z, Sutton RE, Danda S, Ekbote AV, Elsayed SM, et al.
    Genet Med, 2016 05;18(5):483-93.
    PMID: 26204423 DOI: 10.1038/gim.2015.110
    PURPOSE: Cockayne syndrome (CS) is a rare, autosomal-recessive disorder characterized by microcephaly, impaired postnatal growth, and premature pathological aging. It has historically been considered a DNA repair disorder; fibroblasts from classic patients often exhibit impaired transcription-coupled nucleotide excision repair. Previous studies have largely been restricted to case reports and small series, and no guidelines for care have been established.

    METHODS: One hundred two study participants were identified through a network of collaborating clinicians and the Amy and Friends CS support groups. Families with a diagnosis of CS could also self-recruit. Comprehensive clinical information for analysis was obtained directly from families and their clinicians.

    RESULTS AND CONCLUSION: We present the most complete evaluation of Cockayne syndrome to date, including detailed information on the prevalence and onset of clinical features, achievement of neurodevelopmental milestones, and patient management. We confirm that the most valuable prognostic factor in CS is the presence of early cataracts. Using this evidence, we have created simple guidelines for the care of individuals with CS. We aim to assist clinicians in the recognition, diagnosis, and management of this condition and to enable families to understand what problems they may encounter as CS progresses.Genet Med 18 5, 483-493.

    Matched MeSH terms: DNA Helicases/genetics
  4. Yu EPK, Reinhold J, Yu H, Starks L, Uryga AK, Foote K, et al.
    Arterioscler Thromb Vasc Biol, 2017 12;37(12):2322-2332.
    PMID: 28970293 DOI: 10.1161/ATVBAHA.117.310042
    OBJECTIVE: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis.

    APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis.

    CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.

    Matched MeSH terms: DNA Helicases/genetics; DNA Helicases/metabolism
  5. Balraj P, Concannon P, Jamal R, Beghini A, Hoe TS, Khoo AS, et al.
    Mutat Res, 2002 Oct 31;508(1-2):99-105.
    PMID: 12379465
    Rothmund-Thomson syndrome (OMIM #268400) is a severe autosomal recessive genodermatosis: characterised by growth retardation, hyperpigmentation and frequently accompanied by congenital bone defects, brittle hair and hypogonadism. Mutations in helicase RECQ4 gene are responsible for a subset of cases of RTS. Only six mutations have been reported, thus, far and each affecting the coding sequence or the splice junctions. We report the first homozygous mutation in RECQ4 helicase: 2746-2756-delTGGGCTGAGGC in IVS8 responsible for the severe phenotype associated with RTS in a Malaysian pedigree. We report also a 5321 G-->A transition in exon 17 and the updated list of the RECQ4 gene mutations.
    Matched MeSH terms: DNA Helicases/genetics*
  6. Eng Zhuan Ban, Munn Sann Lye, Crystale Siew Ying Lim, Hejar Abdul Rahman, Pei Pei Chong
    MyJurnal
    Cancers of the oral cavity are more common worldwide in men than in women, and the same is true for cancer of the nasopharynx region, whereby nasopharyngeal carcinoma (NPC) incidence rate in men is 2.5 times that in women. Different risk factors, including environmental, lifestyle and genetic factors, come into play in terms of contributing towards the development of these cancers. The increased incidence of oral cancers in developed countries in recent years are attributable to rises in the consumption of tobacco and/or alcoholic beverages, in addition to the traditional practice of betel quid chewing in some communities. As for NPC, the risk factors include male sex, overconsump-tion of preserved salted fish and smoking. In terms of etiology due to microbial agents, the human papillomavirus (HPV) has been linked with oral cancers whereby HPV DNA was found in about 2 out of 3 oropharyngeal cancer cases. In contrast, the Epstein-Barr virus (EBV) has been closely associated with most cases of NPC. Specifically, NPC is categorized by the WHO into two main histological types—keratinizing squamous cell carcinoma (type I) and non-keratinizing squamous cell carcinoma (types II and III), and it is the non-keratinizing type (types II and III) which has very high percentage of EBV DNA. The oncogenicity of these viruses had been studied extensively, and they are now recognized as crucial early triggers of NPC and oral cancers. Genetic factors can also predispose a person to the development of either oral cancer or NPC. Certain HLA class I alleles are associated with increased risks for NPC. Genetic polymorphisms in genes encoding the cytochrome P450 enzymes and glutathione S-transferase had been identified as potential risk factors for NPC. In our studies, we had shown that polymorphism in the XPD gene which encodes a DNA helicase enzyme involved in nucleotide excision repair was linked to risk for NPC in Malaysian population. We also found that the combination of CGC allele from hOGG1, ITGA2 and XPD polymorphisms was significantly associated with increased odds of NPC. In oral cancers, studies by other researchers revealed that gene polymorphisms in HOTAIR gene and the interaction with betel quid chewing are linked to oral cancer risk. Specific COX-2 gene polymorphisms were also found to be associated with increased risk for oral cancer development and progression. Taken together, these studies show a strong correlation between viral etiology combined with the indi-vidual’s genetic background coupled with certain risky lifestyle behaviours which together contribute towards the development of oral cancer and NPC.
    Matched MeSH terms: DNA Helicases
  7. Tan CW, Sam IC, Chong WL, Lee VS, Chan YF
    Antiviral Res, 2017 07;143:186-194.
    PMID: 28457855 DOI: 10.1016/j.antiviral.2017.04.017
    Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log10 PFU viral reduction with IC50value of ∼2.5-5 μg/ml (1.93 μM-3.85 μM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor.
    Matched MeSH terms: DNA Helicases/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links