STUDY DESIGN AND METHODS: Antibody testing results between the years 2013 and 2015 with relevant patient demographic data and red blood cell (RBC) transfusion history were retrieved. Cumulative alloimmunization incidence and evanescence to MUT and Mur were estimated by Kaplan-Meier analysis in relation to the number of RBC units transfused and time.
RESULTS: Of 70,543 selected patients, 6186 nonalloimmunized subjects with available antibody testing results posttransfusion were identified. Cumulative alloimmunization incidence for MUT increased from 0.12% (95% confidence interval [CI], 0.03-0.21) to 0.63% (95% CI, 0.25-1.01), while for Mur it increased from 0.04% (95% CI, 0-0.09) to 0.42% (95% CI, 0.05-0.79) when a patient was transfused 2 RBC units as compared to 12. Both antibodies had high evanescence rates and at 1 year, anti-MUT and -Mur will be detected in only 45% (95% CI, 35%-57%) and 27% (95% CI, 17%-43%), respectively, of previously positive patients. MUT and Mur immunogenicity was estimated to be 1.7 and 1.2 times higher than E when their rate of evanescence was taken into account.
CONCLUSION: Antibodies to MUT and Mur develop following multiple RBC exposures. Immunogenicity of MUT/Mur and evanescence rates of the corresponding antibodies is higher compared to anti-E. Appropriate selection of antibody screening cells is needed in view of the high prevalence, immunogenicity, and evanescence of the antibodies.
RESULTS: Anti-ICAM-1 and CD36 monoclonal antibodies were able to inhibit and reverse P. falciparum binding of lab and recently adapted patient isolates in vitro. However, reversal of binding was incomplete and varied in its efficiency between parasite isolates.
CONCLUSIONS: The results show that, as a proof of concept, disturbing existing ligand-receptor interactions is possible and could have potential therapeutic value for severe malaria. The variation seen in the degree of reversing existing binding with different parasite isolates and the incomplete nature of reversal, despite the use of high affinity inhibitors, suggest that anti-adhesion approaches as adjunct therapies for severe malaria may not be effective, and the focus may need to be on inhibitory approaches such as vaccines.
PURPOSE: In the present study, phyllanthin isolated from Phyllanthus amarus was investigated for its immunosuppressive effects on various cellular and humoral immune responses in Balb/C mice.
METHODS: Male mice were treated daily at 20, 40 and 100mg/kg of phyllanthin for 14 days by oral gavage. The effects of phyllanthin on cellular immune responses in treated /non treated mice were determined by measuring CD 11b/CD 18 integrin expression, phagocytosis, nitric oxide (NO) production, myeloperoxidase activity (MPO), T and B cells proliferation, lymphocyte phenotyping, serum cytokines production by activated T-cells and delayed type hypersensitivity (DTH). Its effects on humoral immune responses were evaluated by determining the serum levels of lysozyme and ceruloplasmin, and immunoglobulins (IgG and IgM).
RESULTS: Phyllanthin dose-dependently inhibited CD11b/CD18 adhesion, the engulfment of E. coli by peritoneal macrophages molecules, NO and MPO release in treated mice. Phyllanthin caused significant and dose-dependent inhibition of T and B lymphocytes proliferation and down-regulation of the Th1 (IL-2 and IFN-γ) and Th2 (IL-4) cytokines. Phyllanthin at 100mg/kg caused a significant reduction in the percentage expression of CD4(+) and CD8(+) in splenocytes and the inhibition was comparable to that of cyclosporin A at 50mg/kg. At 100mg/kg, phyllanthin also dose-dependently exhibited strong inhibition on the sheep red blood cell (sRBC)-induced swelling rate of mice paw in DTH. Significant inhibition of serum levels of ceruloplasmin and lysozyme were observed in mice fed with higher doses (40 and 100mg/kg) of phyllanthin. Anti-sRBC immunoglobulins (IgM and IgG) antibody titer was down-regulated in immunized and phyllanthin-treated mice in a dose-dependent manner with maximum inhibition being observed at 100mg/kg.
CONCLUSION: The strong inhibitory effects of phyllanthin on the cellular and humoral immune responses suggest that phyllanthin may be a good candidate for development into an effective immunosuppressive agent.