Displaying all 10 publications

Abstract:
Sort:
  1. Rashid MH, Hossain MA, Kashem MA, Kumar S, Rafii MY, Latif MA
    ScientificWorldJournal, 2014;2014:639246.
    PMID: 24723819 DOI: 10.1155/2014/639246
    Botrytis gray mold (BGM) caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L.) and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur) in Bangladesh for three years (2008, 2009, and 2010). Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%)], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%), and Protaf 250EC, propiconazole (0.05%)], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%); Secure 600 WG, phenomadone + mancozeb (0.2%); and Companion, mancozeb 63% + carbendazim 12% (0.2%)]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1-9 scale) and the highest increase (38%) of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*
  2. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Maznah Z, Idris AS, et al.
    Sci Rep, 2020 12 18;10(1):22323.
    PMID: 33339951 DOI: 10.1038/s41598-020-79335-6
    The nanoformulations of pesticides have shown great interest from many parties due to their slow release capability and site-specific delivery. Hence, in this work, a new nanoformulation of a fungicide, namely chitosan-hexaconazole nanoparticles with a mean diameter size of 18 nm was subjected to the residual analysis on oil palm tissue, leaf and palm oil (crude palm oil and crude palm kernel oil) using a quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with the gas chromatography-micro electron capture detector (GC-µECD). The chitosan-hexaconazole nanoparticles were applied using the trunk injection method at 4.5 g a.i./palm (standard single dose) and 9.0 g a.i./palm (double dose). The fungicide residue was analyzed at 0 (6 h after application), 1, 3, 7, 14, 30, 60, 90, and 120 days after treatment. The palm oil matrices; the crude palm oil (CPO) and crude palm kernel oil (CPKO) were found to be residue-free. However, it was observed that high accumulation of the fungicide in the stem tissue and leaf after the treatment using the chitosan-hexaconazole nanoparticles, which is good for better bioavailability for the treatment of the fungi, Ganoderma boninense. The dissipation kinetic at double dose treatment in the tissue and leaf was found to govern by the second-order kinetic with half-lives (t1/2) of 383 and 515 days, respectively.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*
  3. Shreaz S, Shiekh RA, Raja V, Wani WA, Behbehani JM
    Chem Biol Interact, 2016 Mar 05;247:64-74.
    PMID: 26806515 DOI: 10.1016/j.cbi.2016.01.015
    In this study, we have used aldehyde function of cinnamaldehyde to synthesize N, N'-Bis (cinnamaldehyde) ethylenediimine [C20H20N2] and Co(II) complex of the type [Co(C40H40N4)Cl2]. The structures of the synthesized compounds were determined on the basis of physiochemical analysis and spectroscopic data ((1)H NMR, FTIR, UV-visible and mass spectra) along with molar conductivity measurements. Anticandidal activity of cinnamaldehyde its ligand [L] and Co(II) complex was investigated by determining MIC80, time-kill kinetics, disc diffusion assay and ergosterol extraction and estimation assay. Ligand [L] and Co(II) complex are found to be 4.55 and 21.0 folds more efficient than cinnamaldehyde in a liquid medium. MIC80 of Co(II) complex correlated well with ergosterol inhibition suggesting ergosterol biosynthesis to be the primary site of action. In comparison to fluconazole, the test compounds showed limited toxicity against H9c2 rat cardiac myoblasts. In confocal microscopy propidium iodide (PI) penetrates the yeast cells when treated with MIC of metal complex, indicating a disruption of cell membrane that results in imbibition of dye. TEM analysis of metal complex treated cells exhibited notable alterations or damage to the cell membrane and the cell wall. The structural disorganization within the cell cytoplasm was noted. It was concluded that fungicidal activity of Co(II) complex originated from loss of membrane integrity and a decrease in ergosterol content is only one consequence of this.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*
  4. Ali A, Wee Pheng T, Mustafa MA
    J Appl Microbiol, 2015 Jun;118(6):1456-64.
    PMID: 25727701 DOI: 10.1111/jam.12782
    To evaluate the potential use of lemongrass essential oil vapour as an alternative for synthetic fungicides in controlling anthracnose of papaya.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*
  5. Zahid N, Ali A, Manickam S, Siddiqui Y, Maqbool M
    J Appl Microbiol, 2012 Oct;113(4):925-39.
    PMID: 22805053 DOI: 10.1111/j.1365-2672.2012.05398.x
    To investigate the antifungal activity of conventional chitosan and chitosan-loaded nanoemulsions against anthracnose caused by Colletotrichum spp. isolated from different tropical fruits.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*
  6. Muhialdin BJ, Hassan Z, Sadon SKh
    J Food Sci, 2011 Sep;76(7):M493-9.
    PMID: 21806613 DOI: 10.1111/j.1750-3841.2011.02292.x
    In the search for new preservatives from natural resources to replace or to reduce the use of chemical preservatives 4 strains of lactic acid bacteria (LAB) were selected to be evaluated for their antifungal activity on selected foods. The supernatants of the selected strains delayed the growth of fungi for 23 to 40 d at 4 °C and 5 to 6 d at 20 and 30 °C in tomato puree, 19 to 29 d at 4 °C and 6 to 12 d at 20 and 30 °C in processed cheese, and 27 to 30 d at 4 °C and 12 to 24 d at 20 and 30 °C in commercial bread. The shelf life of bread with added LAB cells or their supernatants were longer than normal bread. This study demonstrates that Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, L. pentosus G004, and L. paracasi D5 either the cells or their supernatants could be used as biopreservative in bakery products and other processed foods.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*
  7. Al-Samarrai G, Singh H, Syarhabil M
    Ann Agric Environ Med, 2012;19(4):673-6.
    PMID: 23311787
    Fungicides are widely used in conventional agriculture to control plant diseases. Prolonged usage often poses health problems as modern society is becoming more health-conscious. Penicillium digitatum, the cause of citrus green mould, is an important postharvest pathogen which causes serious losses annually. The disease is currently managed with synthetic fungicides. There is, however, a growing concern globally about the continuous use of synthetic chemicals on food crops because of their potential effects on human health and the environment.
    Matched MeSH terms: Fungicides, Industrial/pharmacology
  8. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Zainol Hilmi NH, et al.
    Molecules, 2019 Jul 08;24(13).
    PMID: 31288497 DOI: 10.3390/molecules24132498
    Fungicide is used to control fungal disease by destroying and inhibiting the fungus or fungal spores that cause the disease. However, failure to deliver fungicide to the disease region leads to ineffectiveness in the disease control. Hence, in the present study, nanotechnology has enabled the fungicide active agents (hexaconazole) to be encapsulated into chitosan nanoparticles with the aim of developing a fungicide nanodelivery system that can transport them more effectively to the target cells (Ganoderma fungus). A pathogenic fungus, Ganoderma boninense (G. boninense), is destructive to oil palm whereby it can cause significant loss to oil palm plantations located in the Southeast Asian countries, especially Malaysia and Indonesia. In regard to this matter, a series of chitosan nanoparticles loaded with the fungicide, hexaconazole, was prepared using various concentrations of crosslinking agent sodium tripolyphosphate (TPP). The resulting particle size revealed that the increase of the TPP concentration produced smaller particles. In addition, the in vitro fungicide released at pH 5.5 demonstrated that the fungicide from the nanoparticles was released in a sustainable manner with a prolonged release time up to 86 h. On another note, the in vitro antifungal studies established that smaller particle size leads to lower half maximum effective concentration (EC50) value, which indicates higher antifungal activity against G. boninense.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*
  9. Maluin FN, Hussein MZ, Azah Yusof N, Fakurazi S, Idris AS, Zainol Hilmi NH, et al.
    J Agric Food Chem, 2020 Apr 15;68(15):4305-4314.
    PMID: 32227887 DOI: 10.1021/acs.jafc.9b08060
    The rise of environmental and health concerns due to the excessive use of the conventional fungicide urges the search for sustainable alternatives of agronanofungicides where the latter is aimed to enhance plant uptake and minimize the volatilization, leaching, and runoff of fungicides. With this in mind, fungicides of hexaconazole and/or dazomet were encapsulated into chitosan nanoparticles for the formulation of chitosan-based agronanofungicides. In the present study, chitosan nanoparticles (2 nm), chitosan-hexaconazole nanoparticles (18 and 168 nm), chitosan-dazomet nanoparticles (7 and 32 nm), and chitosan-hexaconazole-dazomet nanoparticles (5 and 58 nm) were synthesized and used as potent antifungal agents in combating the basal stem rot (BSR) disease caused by Ganoderma boninense in which they were evaluated via an artificial inoculation of oil palm seedlings with the rubber woodblock, which was fully colonized with the fungal Ganoderma boninense mycelium. The results revealed that chitosan nanoparticles could act as dual modes of action, which are themselves as a biocide or as a nanocarrier for the existing fungicides. In addition, the particle size of the chitosan-based agronanofungicides plays a crucial role in suppressing and controlling the disease. The synergistic effect of the double-fungicide system of 5 nm chitosan-hexaconazole-dazomet nanoparticles can be observed as the system showed the highest disease reduction with 74.5%, compared to the untreated infected seedlings.
    Matched MeSH terms: Fungicides, Industrial/pharmacology*
  10. Moghaddam SS, Jaafar HB, Aziz MA, Ibrahim R, Rahmat AB, Philip E
    Molecules, 2011;16(11):8981-91.
    PMID: 22439138
    The present study investigates the effects of different concentrations, as well as type of plant growth regulators (PGRs) and medium (MS, Duchefa) on the growth and development of Centella asiatica in semi-solid culture. In addition, a protocol for successful sterilization of C.asiatica explants prepared from field-grown plants highly exposed to fungal and bacterial contamination was determined. Results for sterilization treatments revealed that applying HgCl₂ and Plant Preservative Mixture (PPM) with cetrimide, bavistin and trimethoprim which were included after washing with tap water, followed by the addition of PPM in the medium, produced a very satisfactory result (clean culture 90 ± 1.33%) and TS5 (decon + cetrimide 1% + bavistin 150 mg/L + trimethoprim 50 mg/L + HgCl₂0.1% + PPM 2% soak and 2 mL/L in medium) was hence chosen as the best method of sterilization for C.asiatica. The synergistic combination of 6 benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) in concentrations of 2 mg/L and 0.1 mg/L, respectively, in Duchefa medium compared with MS induced the most optimal percentage of sprouted shoots (93 ± 0.667), number of shoots (5.2 ± 0.079) and nodes (4 ± 0.067) per explant, leaf per explant (14 ± 0.107) and shoot length (4.1 ± 0.67 cm). Furthermore, optimum rooting frequency (95.2 ± 0.81%), the number of roots/shoot (7.5 ± 0.107) and the mean root length (4.5 ± 0.133 cm) occurred for shoots that were cultured on full-strength MS medium containing 0.5 mg/L indole-3-butyric acid (IBA). In this study, the acclimatized plantlets were successfully established with almost 85% survival. The findings of this study have proven an efficient medium and PGR concentration for the mass propagation of C.asiatica. These findings would be useful in micropropagation and ex situ conservation of this plant.
    Matched MeSH terms: Fungicides, Industrial/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links