Displaying all 6 publications

Abstract:
Sort:
  1. Onikanni SA, Lawal B, Munyembaraga V, Bakare OS, Taher M, Khotib J, et al.
    Molecules, 2023 Jul 30;28(15).
    PMID: 37570723 DOI: 10.3390/molecules28155752
    Glucokinase plays an important role in regulating the blood glucose level and serves as an essential therapeutic target in type 2 diabetes management. Entada africana is a medicinal plant and highly rich source of bioactive ligands with the potency to develop new target drugs for glucokinase such as diabetes and obesity. Therefore, the study explored a computational approach to predict identified compounds from Entada africana following its intermolecular interactions with the allosteric binding site of the enzymes. We retrieved the three-dimensional (3D) crystal structure of glucokinase (PDB ID: 4L3Q) from the online protein data bank and prepared it using the Maestro 13.5, Schrödinger Suite 2022-3. The compounds identified were subjected to ADME, docking analysis, pharmacophore modeling, and molecular simulation. The results show the binding potential of the identified ligands to the amino acid residues, thereby suggesting an interaction of the amino acids with the ligand at the binding site of the glucokinase activator through conventional chemical bonds such as hydrogen bonds and hydrophobic interactions. The compatibility of the molecules was highly observed when compared with the standard ligand, thereby leading to structural and functional changes. Therefore, the bioactive components from Entada africana could be a good driver of glucokinase, thereby paving the way for the discovery of therapeutic drugs for the treatment of diabetes and its related complications.
    Matched MeSH terms: Glucokinase/metabolism
  2. Chew YH, Shia YL, Lee CT, Majid FA, Chua LS, Sarmidi MR, et al.
    Mol Cell Endocrinol, 2009 Aug 13;307(1-2):57-67.
    PMID: 19524127 DOI: 10.1016/j.mce.2009.03.005
    A mathematical model to describe the oscillatory bursting activity of pancreatic beta-cells is combined with a model of glucose regulation system in this work to study the bursting pattern under regulated extracellular glucose stimulation. The bursting electrical activity in beta-cells is crucial for the release of insulin, which acts to regulate the blood glucose level. Different types of bursting pattern have been observed experimentally in glucose-stimulated islets both in vivo and in vitro, and the variations in these patterns have been linked to changes in glucose level. The combined model in this study enables us to have a deeper understanding on the regime change of bursting pattern when glucose level changes due to hormonal regulation, especially in the postprandial state. This is especially important as the oscillatory components of electrical activity play significant physiological roles in insulin secretion and some components have been found to be lost in type 2 diabetic patients.
    Matched MeSH terms: Glucokinase/metabolism
  3. Li X, Ting TH, Sheng H, Liang CL, Shao Y, Jiang M, et al.
    BMC Pediatr, 2018 03 06;18(1):101.
    PMID: 29510678 DOI: 10.1186/s12887-018-1060-8
    BACKGROUND: There is scarcity of information on the clinical features and genetics of glucokinase-maturity-onset diabetes of the young (GCK-MODY) in China. The aim of the study was to investigate the clinical and molecular characteristics of Chinese children with GCK-MODY.

    METHODS: Eleven children with asymptomatic hyperglycemia and clinically suspected GCK-MODY were identified from the database of children with diabetes in the biggest children's hospital in South China. Clinical data were obtained from medical records. Blood was collected from the patients and their parents for glucokinase (GCK) gene analysis. Parents without diabetes were tested for fasting glucose and HbA1c. Clinical information and blood for GCK gene analysis were obtained from grandparents with diabetes. GCK gene mutational analysis was performed by polymerase chain reaction and direct sequencing. Patients without a GCK gene mutation were screened by targeted next-generation sequencing (NGS) technology for other MODY genes.

    RESULTS: Nine children tested positive for GCK gene mutations while two were negative. The nine GCK-MODY patients were from unrelated families, aged 1 month to 9 years and 1 month at first detection of hyperglycaemia. Fasting glucose was elevated (6.1-8.5 mmol/L), HbA1c 5.2-6.7% (33.3-49.7 mmol/mol), both remained stable on follow-up over 9 months to 5 years. Five detected mutations had been previously reported: p.Val182Met, c.679 + 1G > A, p.Gly295Ser, p.Arg191Gln and p.Met41Thr. Four mutations were novel: c.483 + 2 T > A, p.Ser151del, p.Met57GlyfsX29 and p.Val374_Ala377del. No mutations were identified in the other two patients, who were also tested by NGS.

    CONCLUSIONS: GCK gene mutations are detected in Chinese children and their family members with typical clinical features of GCK-MODY. Four novel mutations are detected.
    Matched MeSH terms: Glucokinase/genetics*
  4. Tan HL, Zain SM, Mohamed R, Rampal S, Chin KF, Basu RC, et al.
    J Gastroenterol, 2014 Jun;49(6):1056-64.
    PMID: 23800943 DOI: 10.1007/s00535-013-0850-x
    BACKGROUND: Recent genome-wide association studies demonstrated an association between single nucleotide polymorphisms (SNPs) on the glucokinase regulatory gene (GCKR) with hepatic steatosis. This study attempted to investigate the association of GCKR rs780094 and rs1260326 with susceptibility to non-alcoholic fatty liver disease (NAFLD) and its severity.

    METHODS: The genotypes were assessed on 144 histologically confirmed NAFLD patients and 198 controls using a Sequenom MassARRAY platform.

    RESULTS: The GCKR rs1260326 and rs780094 allele T were associated with susceptibility to NAFLD (OR 1.49, 95 % CI 1.09-2.05, p = 0.012; and OR 1.51, 95 % CI 1.09-2.09, p = 0.013, respectively), non-alcoholic steatohepatitis (NASH) (OR 1.55, 95 % CI 1.10-2.17, p = 0.013; and OR 1.56, 95 % CI 1.10-2.20, p = 0.012, respectively) and NASH with significant fibrosis (OR 1.50, 95 % CI 1.01-2.21, p = 0.044; and OR 1.52, 95 % CI 1.03-2.26, p = 0.038, respectively). Following stratification by ethnicity, significant association was seen in Indian patients between the two SNPs and susceptibility to NAFLD (OR 2.64, 95 % CI 1.28-5.43, p = 0.009; and OR 4.35, 95 % CI 1.93-9.81, p < 0.0001, respectively). The joint effect of GCKR with adiponutrin rs738409 indicated greatly increased the risk of NAFLD (OR 4.14, 95 % CI 1.41-12.18, p = 0.010). Histological data showed significant association of GCKR rs1260326 with high steatosis grade (OR 1.76, 95 % CI 1.08-2.85, p = 0.04).

    CONCLUSION: This study suggests that risk allele T of the GCKR rs780094 and rs1260326 is associated with predisposition to NAFLD and NASH with significant fibrosis. The GCKR and PNPLA3 genes interact to result in increased susceptibility to NAFLD.

    Matched MeSH terms: Glucokinase/genetics*
  5. Xu A, Lin Y, Sheng H, Cheng J, Mei H, Ting TH, et al.
    Pediatr Diabetes, 2020 05;21(3):431-440.
    PMID: 31957151 DOI: 10.1111/pedi.12985
    OBJECTIVE: The purpose of this study was to investigate the molecular basis of maturity-onset diabetes of the young (MODY) by whole-exome sequencing (WES) and estimate the frequency and describe the clinical characteristics of MODY in southern China.

    METHODS: Genetic analysis was performed in 42 patients with MODY aged 1 month to 18 years among a cohort of 759 patients with diabetes, identified with the following four clinical criteria: age of diagnosis ≤18 years; negative pancreatic autoantibodies; family history of diabetes; or persistently detectable C-peptide; or diabetes associated with extrapancreatic features. GCK gene mutations were first screened by Sanger sequencing. GCK mutation-negative patients were further analyzed by WES.

    RESULTS: Mutations were identified in 24 patients: 20 mutations in GCK, 1 in HNF4A, 1 in INS, 1 in ABCC8, and a 17q12 microdeletion. Four previously unpublished novel GCK mutations: c.1108G>C in exon 9, and c.1339C>T, c.1288_1290delCTG, and c.1340_1343delGGGGinsCTGGTCT in exon 10 were detected. WES identified a novel missense mutation c.311A>G in exon 3 in the INS gene, and copy number variation analysis detected a 1.4 Mb microdeletion in the long arm of the chromosome 17q12 region. Compared with mutation-negative subjects, the mutation-positive subjects had lower hemoglobin A1c and initial blood glucose levels.

    CONCLUSIONS: Most MODY cases in this study were due to GCK mutations, which is in contrast to previous reports in Chinese patients. Diabetes associated with extrapancreatic features should be a clinical criterion for MODY genetic analysis. Mutational analysis by WES provided a precise diagnosis of MODY subtypes. Moreover, WES can be useful for detecting large deletions in coding regions in addition to point mutations.

    Matched MeSH terms: Glucokinase/genetics
  6. Ghazalli N, Wu X, Walker S, Trieu N, Hsin LY, Choe J, et al.
    Stem Cells Dev, 2018 07 01;27(13):898-909.
    PMID: 29717618 DOI: 10.1089/scd.2017.0160
    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
    Matched MeSH terms: Glucokinase/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links