OBJECTIVES: To evaluate the effectiveness of various techniques of laser photocoagulation therapy in sickle cell disease-related retinopathy.
SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. Date of last search: 21 September 2015.We also searched the following resources (24 March 2015): Latin American and Carribean Health Science Literature Database (LILACS); WHO International Clinical Trials Registry Platforms (ICTRP); and ClinicalTrials.gov.
SELECTION CRITERIA: Randomised controlled trials comparing laser photocoagulation to no treatment in children and adults.
DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial eligibility, the risk of bias of the included trials and extracted and analysed data. We contacted the trial authors for additional information.
MAIN RESULTS: Two trials (341 eyes of 238 children and adults) were included comparing efficacy and safety of laser photocoagulation to no therapy in people with proliferative sickle retinopathy. There were 121 males and 117 females with an age range from 13 to 67 years. The laser photocoagulation technique used was different in the two trials; one single-centre trial employed sectoral scatter laser photocoagulation using an argon laser; and the second, two-centre trial, employed feeder vessel coagulation using argon laser in one centre and xenon arc in the second centre. The follow-up period ranged from a mean of 21 to 32 months in one trial and 42 to 47 months in the second. Both trials were at risk of selection bias (random sequence generation) because of the randomisation method employed for participants with bilateral disease. One study was considered to be at risk of reporting bias.Using sectoral scatter laser photocoagulation, one trial (174 eyes) reported that complete regression of proliferative sickle retinopathy was seen in 30.2% in the laser group and 22.4% in the control group (no difference between groups). The same trial reported the development of new proliferative sickle retinopathy in 34.3% of laser-treated eyes and in 41.3% of eyes given no treatment; again, there was no difference between treatment groups. The second trial, using feeder vessel coagulation, did not present full data for either treatment group for these outcomes.There was evidence from both trials (341 eyes) that laser photocoagulation using scatter laser or feeder vessel coagulation may prevent the loss of vision in eyes with proliferative sickle retinopathy (at median follow up of 21 to 47 months). Data from both trials indicated that laser treatment prevented the occurrence of vitreous haemorrhage with both argon and xenon laser; with the protective effect being greater with feeder vessel laser treatment compared to scatter photocoagulation.Regarding adverse effects, the incidence of retinal tear was minimal, with only one event reported. Combined data from both trials were available for 341 eyes; there was no difference between the laser and control arms for retinal detachment. In relation to choroidal neovascularization, treatment with xenon arc was found to be associated with a significantly higher risk, but visual loss related to this complication is uncommon with long-term follow up of three years or more.Data regarding quality of life and other adverse effects were not reported in the included trials.
AUTHORS' CONCLUSIONS: Our conclusions are based on the data from two trials conducted over 20 years ago. In the absence of further evidence, laser treatment for sickle cell disease-related retinopathy should be considered as a one of therapeutic options for preventing visual loss and vitreous haemorrhage. However, it does not appear to have a significant different effect on other clinical outcomes such as regression of proliferative sickle retinopathy and development of new ones. No evidence is available assessing efficacy in relation to patient-important outcomes (such as quality of life or the loss of a driving licence). There is limited evidence on safety, overall, scatter argon laser photocoagulation is superior in terms of adverse effects, although feeder vessel coagulation has a better effect in preventing vitreous haemorrhage. Further research is needed to examine the safety of laser treatment compared to other interventions such as intravitreal injection of anti-vascular endothelial growth factors. In addition, patient-important outcomes as well as cost-effectiveness should be addressed.
METHODS: This comparative pilot study consists of 40 diabetic patients with diabetic macular oedema. The patients were randomized into two groups using envelope technique sampling procedure. Treatment for diabetic macular oedema was based on the printed envelope technique selected for every patient. Twenty patients were assigned for IVTA group (one injection of IVTA) and another 20 patients for LASER group (one laser session). Main outcome measures were mean BCVA and mean MEI at three months post treatment. The MEI was quantified using Heidelberg Retinal Tomography II.
RESULTS: The mean difference for BCVA at baseline [IVTA: 0.935 (0.223), LASER: 0.795 (0.315)] and at three months post treatment [IVTA: 0.405 (0.224), LASER: 0.525 (0.289)] between IVTA and LASER group was not statistically significant (p = 0.113 and p = 0.151 respectively). The mean difference for MEI at baseline [IVTA: 2.539 (0.914), LASER: 2.139 (0.577)] and at three months post treatment [IVTA: 1.753 (0.614), LASER: 1.711 (0.472)] between IVTA and LASER group was also not statistically significant (p = 0.106 and p = 0.811 respectively).
CONCLUSIONS: IVTA demonstrates good outcome comparable to laser photocoagulation as a primary treatment for diabetic macular oedema at three months post treatment.
TRIAL REGISTRATION: ISRCTN05040192 (http://www.controlled-trial.com).
METHODS: The cross-sectional study included 322 children between 3 and 11 years of age born term or preterm, with or without ROP, and with or without treatment for ROP. The ROP treatments were laser therapy, intravitreal injection (IVI) of anti-vascular endothelial growth factor, or their combination. Stereoacuity was measured using the Titmus Stereo Test, and the results among various age groups were analyzed.
RESULTS: Stereopsis was found to improve with increasing age at testing (P 0.05). No significant differences in stereopsis were identified between children with ROP treated with laser versus with IVI (P > 0.05). From multivariate analysis, younger age at testing (P = 0.001) and younger gestational age (P laser photocoagulation versus IVI may exhibit similar levels of stereoacuity. Younger age at testing and gestational age were independent risk factors for poorer stereoacuity.
MATERIAL AND METHODS: This is a prospective cohort study including MCDA twins enrolled at the time of first-trimester combined screening. Differences in crown-rump length (CRL), nuchal translucency (NT) thickness, ductus venosus pulsatility index for veins (DV PIV), presence or absence of tricuspid regurgitation and right ventricular E/A ratio were assessed. Receiver operating characteristic (ROC) curves were used to assess the potential value of these measures as predictive tools for identifying a cohort of MCDA pregnancies at high risk of adverse pregnancy outcome.
RESULTS: Sixty-five MCDA pregnancies were included in the analysis. Nine (14%) developed TTTS, 17 (26%) developed sIUGR. The best predictive marker for TTTS was NT discordance of ≥20% (ROC AUC = 0.79; 95% CI 0.59-0.99). Combining measures did not improve performance (AUC = 0.80; 95% CI 0.62-0.99).
CONCLUSION: NT discordance was the most effective characteristic at predicting TTTS but still had a relatively poor positive predictive value (36%). Intertwin differences in CRL, DV PIV and E/A ratio were not predictive of subsequent pregnancy complications. None of these characteristics have sufficient efficacy to be used to triage MCDA twin pregnancies ongoing obstetric surveillance.