Displaying all 4 publications

Abstract:
Sort:
  1. Sulaiman SN, Mukhtar MR, Hadi AH, Awang K, Hazni H, Zahari A, et al.
    Molecules, 2011 Apr 13;16(4):3119-27.
    PMID: 21490559 DOI: 10.3390/molecules16043119
    A new bisbenzylisoquinoline, lancifoliaine (1), together with seven known alkaloids--N-allyllaurolitsine (2), reticuline (3), actinodaphnine, norboldine, pallidine, cassythicine and boldine--were isolated from the stem bark of Litsea lancifolia (Lauraceae). In addition to that of lancifoliaine, complete ¹³C-NMR data of N-allyl-laurolitsine (2) was also reported. The alkaloidal structures were elucidated by means of high field 1D- and 2D-NMR IR, UV, and LCMS-IT-TOF spectral data. N-Allyllaurolitsine (2) showed a moderate vasorelaxant activity on isolated rat aorta.
    Matched MeSH terms: Litsea/chemistry*
  2. Chung LY, Lo MW, Mustafa MR, Goh SH, Imiyabir Z
    Phytother Res, 2009 Mar;23(3):330-4.
    PMID: 18844258 DOI: 10.1002/ptr.2627
    A 96-well microplate filtration based 5-HT(2A) receptor-radioligand binding assay was optimized and adopted to carry out a bioassay-guided fractionation of the methanol extract of the leaves of Litsea sessilis. This purification led to the isolation of two compounds identified as (+)-boldine (1) and (+)-dehydrovomifoliol (2). (+)-Boldine binds to 5-HT(2A) receptors at high concentrations with a K(i) value of 2.16 microm. However, (+)-dehydrovomifoliol showed minimal competitive inhibition on the binding of [(3)H]ketanserin to the same receptor with a K(i) value of 2.06 mm. These results suggest that (+)-boldine influences the activity of 5-HT(2A) receptors through competitive binding as an agonist or antagonist.
    Matched MeSH terms: Litsea/chemistry*
  3. Abdul Hammid S, Ahmad F
    Nat Prod Commun, 2015 Jul;10(7):1301-4.
    PMID: 26411035
    The essential oils from different parts of Litsea cubeba, collected from the highlands of Sarawak, were isolated and their chemical compositions analyzed. This study demonstrated significant variations in the chemical compositions and the chemical profiles of the volatiles and could provide valuable supplementary information on the geographical variations of the species. The fruit essential oil was dominated by citronellal, d-limonene and citronellol, while the leaf oil was high in eucalyptol and a-terpineol. High concentrations of citronellal and citronellol in both the root and bark oils were identified. In the stem, the oil was dominated by eucalyptol, d-limonene and α-terpineol. The activity of the oils against brine shrimp larvae, bacteria, yeast and fungi was determined. The oils were toxic against brine shrimp larvae with LC50 values ranging from 25.1 - 30.9 μL/mL. The oils also demonstrated a wide spectrum of inhibition against microorganisms with inhibition zones between 19.5 - 46.7 mm against Gram-positive bacteria and 10.5 - 90.0 mm against yeast and fungi. However, the oils were not active against Gram-negative bacteria.
    Matched MeSH terms: Litsea/chemistry*
  4. Hosseinzadeh M, Mohamad J, Khalilzadeh MA, Zardoost MR, Haak J, Rajabi M
    J. Photochem. Photobiol. B, Biol., 2013 Nov 5;128:85-91.
    PMID: 24077497 DOI: 10.1016/j.jphotobiol.2013.08.002
    The bark of Litsea costalis affords two new compounds named 4,4'-diallyl-5,5'-dimethoxy-[1,1'-biphennyl]-2,2'-diol, biseugenol A (1) and 2,2'-oxybis (4-allyl-1-methoxybenzene), biseugenol B (2) along with two known compounds (3-4), namely 5-methoxy-2-Hydroxy Benzaldehyde (3), and (E)-4-styrylphenol (4). The structures of 1 and 2 were determined using 1D and 2D NMR data. Also, the IR and NMR data were combined with quantum chemical calculations in the DFT approach using the hybrid B3LYP exchange-correlation function to confirm the structures of the compounds. Compounds showed fairly potent anticancer activity against cell lines and antioxidant (DPPH).
    Matched MeSH terms: Litsea/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links