Displaying publications 1 - 20 of 172 in total

Abstract:
Sort:
  1. Nhu NTK, Phan MD, Peters KM, Lo AW, Forde BM, Min Chong T, et al.
    mBio, 2018 08 21;9(4).
    PMID: 30131362 DOI: 10.1128/mBio.01462-18
    Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.
    Matched MeSH terms: Mice, Inbred C57BL
  2. Setoh YX, Peng NY, Nakayama E, Amarilla AA, Prow NA, Suhrbier A, et al.
    Viruses, 2018 10 03;10(10).
    PMID: 30282919 DOI: 10.3390/v10100541
    The recent emergence of Zika virus (ZIKV) in Brazil was associated with an increased number of fetal brain infections that resulted in a spectrum of congenital neurological complications known as congenital Zika syndrome (CZS). Herein, we generated de novo from sequence data an early Asian lineage ZIKV isolate (ZIKV-MY; Malaysia, 1966) not associated with microcephaly and compared the in vitro replication kinetics and fetal brain infection in interferon α/β receptor 1 knockout (IFNAR1-/-) dams of this isolate and of a Brazilian isolate (ZIKV-Natal; Natal, 2015) unequivocally associated with microcephaly. The replication efficiencies of ZIKV-MY and ZIKV-Natal in A549 and Vero cells were similar, while ZIKV-MY replicated more efficiently in wild-type (WT) and IFNAR-/- mouse embryonic fibroblasts. Viremias in IFNAR1-/- dams were similar after infection with ZIKV-MY or ZIKV-Natal, and importantly, infection of fetal brains was also not significantly different. Thus, fetal brain infection does not appear to be a unique feature of Brazilian ZIKV isolates.
    Matched MeSH terms: Mice, Inbred C57BL
  3. Yun SI, Song BH, Frank JC, Julander JG, Olsen AL, Polejaeva IA, et al.
    Viruses, 2018 08 11;10(8).
    PMID: 30103523 DOI: 10.3390/v10080422
    Zika virus (ZIKV) causes no-to-mild symptoms or severe neurological disorders. To investigate the importance of viral and host genetic variations in determining ZIKV infection outcomes, we created three full-length infectious cDNA clones as bacterial artificial chromosomes for each of three spatiotemporally distinct and genetically divergent ZIKVs: MR-766 (Uganda, 1947), P6-740 (Malaysia, 1966), and PRVABC-59 (Puerto Rico, 2015). Using the three molecularly cloned ZIKVs, together with 13 ZIKV region-specific polyclonal antibodies covering nearly the entire viral protein-coding region, we made three conceptual advances: (i) We created a comprehensive genome-wide portrait of ZIKV gene products and their related species, with several previously undescribed gene products identified in the case of all three molecularly cloned ZIKVs. (ii) We found that ZIKV has a broad cell tropism in vitro, being capable of establishing productive infection in 16 of 17 animal cell lines from 12 different species, although its growth kinetics varied depending on both the specific virus strain and host cell line. More importantly, we identified one ZIKV-non-susceptible bovine cell line that has a block in viral entry but fully supports the subsequent post-entry steps. (iii) We showed that in mice, the three molecularly cloned ZIKVs differ in their neuropathogenicity, depending on the particular combination of viral and host genetic backgrounds, as well as in the presence or absence of type I/II interferon signaling. Overall, our findings demonstrate the impact of viral and host genetic variations on the replication kinetics and neuropathogenicity of ZIKV and provide multiple avenues for developing and testing medical countermeasures against ZIKV.
    Matched MeSH terms: Mice, Inbred C57BL
  4. Dups J, Middleton D, Long F, Arkinstall R, Marsh GA, Wang LF
    Virol J, 2014;11:102.
    PMID: 24890603 DOI: 10.1186/1743-422X-11-102
    Nipah virus and Hendra virus are closely related and following natural or experimental exposure induce similar clinical disease. In humans, encephalitis is the most serious outcome of infection and, hitherto, research into the pathogenesis of henipavirus encephalitis has been limited by the lack of a suitable model. Recently we reported a wild-type mouse model of Hendra virus (HeV) encephalitis that should facilitate detailed investigations of its neuropathogenesis, including mechanisms of disease recrudescence. In this study we investigated the possibility of developing a similar model of Nipah virus encephalitis.
    Matched MeSH terms: Mice, Inbred C57BL
  5. Ling WC, Mustafa MR, Vanhoutte PM, Murugan DD
    Vascul. Pharmacol., 2018 03;102:11-20.
    PMID: 28552746 DOI: 10.1016/j.vph.2017.05.003
    AIM: Endothelial dysfunction accompanied by an increase in oxidative stress is a key event leading to hypertension. As dietary nitrite has been reported to exert antihypertensive effect, the present study investigated whether chronic oral administration of sodium nitrite improves vascular function in conduit and resistance arteries of hypertensive animals with elevated oxidative stress.

    METHODS: Sodium nitrite (50mg/L) was given to angiotensin II-infused hypertensive C57BL/6J (eight to ten weeks old) mice for two weeks in the drinking water. Arterial systolic blood pressure was measured using the tail-cuff method. Vascular responsiveness of isolated aortae and renal arteries was studied in wire myographs. The level of nitrite in the plasma and the cyclic guanosine monophosphate (cGMP) content in the arterial wall were determined using commercially available kits. The production of reactive oxygen species (ROS) and the presence of proteins (nitrotyrosine, NOx-2 and NOx-4) involved in ROS generation were evaluated with dihydroethidium (DHE) fluorescence and by Western blotting, respectively.

    RESULTS: Chronic administration of sodium nitrite for two weeks to mice with angiotensin II-induced hypertension decreased systolic arterial blood pressure, reversed endothelial dysfunction, increased plasma nitrite level as well as vascular cGMP content. In addition, sodium nitrite treatment also decreased the elevated nitrotyrosine and NOx-4 protein level in angiotensin II-infused hypertensive mice.

    CONCLUSIONS: The present study demonstrates that chronic treatment of hypertensive mice with sodium nitrite improves impaired endothelium function in conduit and resistance vessels in addition to its antihypertensive effect, partly through inhibition of ROS production.

    Matched MeSH terms: Mice, Inbred C57BL
  6. El Saftawy EA, Shash RY, Aboulhoda BE, Arsanyos SF, Albadawi EA, Abou-Fandoud SM, et al.
    Trop Biomed, 2021 Jun 01;38(2):53-62.
    PMID: 33973573 DOI: 10.47665/tb.38.2.037
    BACKGROUND: toxoplasmosis is a cosmopolitan protozoan disease with a wide range of neuropathology. Recent studies identified its potential association with several mental disorders e.g. schizophrenia dependable on apoptosis in their pathogenesis. We investigated value of toxoplasmosis to induce apoptosis of the neuronal cells.

    METHODS: per-orally infected C57BL/6 mice with 15-20 cysts of the avirulent T. gondii Beverly strain at 9-11 weeks of age were examined 12 weeks later during parasite establishment. Distributions of the parasite's cysts and the histopathological lesions in the brains were analyzed using Image J software. Relative expression of TNF-α and iNOS of cell-mediated immunity (CMI), Bax (pro-apoptosis) and Bcl-2 (anti-apoptosis) were all assessed using immunohistochemistry.

    RESULTS: higher parasite burden was seen in the forebrain with p value <= 0.05. Dramatically increased TNF-α, iNOS, and Bax expressions with Bax/Bcl-2 ratio 2.42:0.52 were reported (p value <= 0.05). The significant correlation between Bax data and different CMI biomarkers including TNF-α and i-NOS was evaluated. Interestingly, no significant correlation was seen between TNF-α, iNOS, Bax and Bcl-2 expressions and location of the parasite. However, Bax/Bcl-2 ratio was statistically correlated with CMI biomarkers and whole sample mean parasite burden, p value <= 0.05.

    CONCLUSION: Chronic toxoplasmosis exhibits an immense pro-apoptotic signal on the cerebral tissues of experimental mice.

    Matched MeSH terms: Mice, Inbred C57BL
  7. Al Abbar A, Nordin N, Ghazalli N, Abdullah S
    Tissue Cell, 2018 Dec;55:13-24.
    PMID: 30503056 DOI: 10.1016/j.tice.2018.09.004
    Induced pluripotent stem cells (iPSCs) have great potentials for regenerative medicine. However, serious concerns such as the use of the viral-mediated reprogramming strategies and exposure of iPSCs to animal products from feeder cells and serum-containing medium have restricted the application of iPSCs in the clinics. Therefore, the generation of iPSCs with minimal viral integrations and in non-animal sourced and serum-free medium is necessary. In this report, a polycistronic lentiviral vector carrying Yamanaka's factors was used to reprogram mouse fibroblasts into iPSCs in feeder- and xeno-free culture environment. The generated iPSCs exhibited morphology and self-renewal properties of embryonic stem cells (ESCs), expression of specific pluripotent markers, and potentials to differentiate into the three-major distinct specialized germ layers in vitro. The iPSCs were also shown to have the potential to differentiate into neural precursor and neurons in culture, with greater than 95% expression of nestin, Pax6 and βIII-tubulin. This body of work describes an alternative method of generating iPSCs by using polycistronic lentiviral vector that may minimize the risks associated with viral vector-mediated reprogramming and animal derived products in the culture media.
    Matched MeSH terms: Mice, Inbred C57BL
  8. Lee MT, Chen YH, Mackie K, Chiou LC
    J Pain, 2021 03;22(3):300-312.
    PMID: 33069869 DOI: 10.1016/j.jpain.2020.09.003
    Analgesic tolerance to opioids contributes to the opioid crisis by increasing the quantity of opioids prescribed and consumed. Thus, there is a need to develop non-opioid-based pain-relieving regimens as well as strategies to circumvent opioid tolerance. Previously, we revealed a non-opioid analgesic mechanism induced by median nerve electrostimulation at the overlaying PC6 (Neiguan) acupoint (MNS-PC6). Here, we further examined the efficacy of MNS-PC6 in morphine-tolerant mice with neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. Daily treatments of MNS-PC6 (2 Hz, 2 mA), but not electrostimulation at a nonmedian nerve-innervated location, for a week post-CCI induction significantly suppressed established mechanical allodynia in CCI-mice in an orexin-1 (OX1) and cannabinoid-1 (CB1) receptor-dependent fashion. This antiallodynic effect induced by repeated MNS-PC6 was comparable to that induced by repeated gabapentin (50 mg/kg, i.p.) or single morphine (10 mg/kg, i.p.) treatments, but without tolerance, unlike repeated morphine-induced analgesia. Furthermore, single and repeated MNS-PC6 treatments remained fully effective in morphine-tolerant CCI-mice, also in an OX1 and CB1 receptor-dependent fashion. In CCI-mice receiving escalating doses of morphine for 21 days (10, 20 and 50 mg/kg), single and repeated MNS-PC6 treatments remained fully effective. Therefore, repeated MNS-PC6 treatments induce analgesia without tolerance, and retain efficacy in opioid-tolerant mice via a mechanism that involves OX1 and CB1 receptors. This study suggests that MNS-PC6 is an alternative pain management strategy that maybe useful for combatting the opioid epidemic, and opioid-tolerant patients receiving palliative care. PERSPECTIVE: Median nerve stimulation relieves neuropathic pain in mice without tolerance and retains efficacy even in mice with analgesic tolerance to escalating doses of morphine, via an opioid-independent, orexin-endocannabinoid-mediated mechanism. This study provides a proof of concept for utilizing peripheral nerve stimulating devices for pain management in opioid-tolerant patients.
    Matched MeSH terms: Mice, Inbred C57BL
  9. Kirby BP, Pabari R, Chen CN, Al Baharna M, Walsh J, Ramtoola Z
    J Pharm Pharmacol, 2013 Oct;65(10):1473-81.
    PMID: 24028614 DOI: 10.1111/jphp.12125
    In this study, we examined the relative cellular uptake of nanoparticles (NPs) formulated using poly(lactic-co-glycolic acid) (PLGA) polymers with increasing degree of pegylation (PLGA-PEG) and their potential to deliver loperamide to the brain of a mouse.
    Matched MeSH terms: Mice, Inbred C57BL
  10. Sarchio SNE, Scolyer RA, Beaugie C, McDonald D, Marsh-Wakefield F, Halliday GM, et al.
    J Invest Dermatol, 2014 Apr;134(4):1091-1100.
    PMID: 24226205 DOI: 10.1038/jid.2013.424
    One way sunlight causes skin cancer is by suppressing anti-tumor immunity. A major mechanism involves altering mast cell migration via the C-X-C motif chemokine receptor 4-C-X-C motif chemokine ligand 12 (CXCR4-CXCL12) chemokine pathway. We have discovered that pharmacologically blocking this pathway with the CXCR4 antagonist AMD3100 prevents both UV radiation-induced immune suppression and skin cancer. The majority of control mice receiving UV-only developed histopathologically confirmed squamous cell carcinomas. In contrast, skin tumor incidence and burden was significantly lower in AMD3100-treated mice. Perhaps most striking was that AMD3100 completely prevented the outgrowth of latent tumors that occurred once UV irradiation ceased. AMD3100 protection from UV immunosuppression and skin cancer was associated with reduced mast cell infiltration into the skin, draining lymph nodes, and the tumor itself. Thus a major target of CXCR4 antagonism was the mast cell. Our results indicate that interfering with UV-induced CXCL12 by antagonizing CXCR4 significantly inhibits skin tumor development by blocking UV-induced effects on mast cells. Hence, the CXCR4-CXCL12 chemokine pathway is a novel therapeutic target in the prevention of UV-induced skin cancer.
    Matched MeSH terms: Mice, Inbred C57BL
  11. Michaudel C, Mackowiak C, Maillet I, Fauconnier L, Akdis CA, Sokolowska M, et al.
    J Allergy Clin Immunol, 2018 09;142(3):942-958.
    PMID: 29331644 DOI: 10.1016/j.jaci.2017.11.044
    BACKGROUND: IL-33 plays a critical role in regulation of tissue homeostasis, injury, and repair. Whether IL-33 regulates neutrophil recruitment and functions independently of airways hyperresponsiveness (AHR) in the setting of ozone-induced lung injury and inflammation is unclear.

    OBJECTIVE: We sought to examine the role of the IL-33/ST2 axis in lung inflammation on acute ozone exposure in mice.

    METHODS: ST2- and Il33-deficient, IL-33 citrine reporter, and C57BL/6 (wild-type) mice underwent a single ozone exposure (1 ppm for 1 hour) in all studies. Cell recruitment in lung tissue and the bronchoalveolar space, inflammatory parameters, epithelial barrier damage, and airway hyperresponsiveness (AHR) were determined.

    RESULTS: We report that a single ozone exposure causes rapid disruption of the epithelial barrier within 1 hour, followed by a second phase of respiratory barrier injury with increased neutrophil recruitment, reactive oxygen species production, AHR, and IL-33 expression in epithelial and myeloid cells in wild-type mice. In the absence of IL-33 or IL-33 receptor/ST2, epithelial cell injury with protein leak and myeloid cell recruitment and inflammation are further increased, whereas the tight junction proteins E-cadherin and zonula occludens 1 and reactive oxygen species expression in neutrophils and AHR are diminished. ST2 neutralization recapitulated the enhanced ozone-induced neutrophilic inflammation. However, myeloid cell depletion using GR-1 antibody reduced ozone-induced lung inflammation, epithelial cell injury, and protein leak, whereas administration of recombinant mouse IL-33 reduced neutrophil recruitment in Il33-deficient mice.

    CONCLUSION: Data demonstrate that ozone causes an immediate barrier injury that precedes myeloid cell-mediated inflammatory injury under the control of the IL-33/ST2 axis. Thus IL-33/ST2 signaling is critical for maintenance of intact epithelial barrier and inflammation.

    Matched MeSH terms: Mice, Inbred C57BL
  12. Muthuraju S, Islam MR, Pati S, Jaafar H, Abdullah JM, Yusoff KM
    Int J Neurosci, 2015;125(9):686-92.
    PMID: 25180987 DOI: 10.3109/00207454.2014.961065
    Dopamine (DA) is one of the key neurotransmitters in the striatum, which is functionally important for a variety of cognitive and motor behaviours. It is known that the striatum is vulnerable to damage from traumatic brain injury (TBI). However, a therapeutic approach has not yet been established to treat TBI. Hence, the present work aimed to evaluate the ability of Normobaric hyperoxia treatment (NBOT) to recover dopaminergic neurons following a fluid percussion injury (FPI) as a TBI experimental animal model. To examine this, mice were divided into four groups: (i) Control, (ii) Sham, (iii) FPI and (iv) FPI+NBOT. Mice were anesthetized and surgically prepared for FPI in the striatum and immediate exposure to NBOT at various time points (3, 6, 12 and 24 h). Dopamine levels were then estimated post injury by utilizing a commercially available ELISA method specific to DA. We found that DA levels were significantly reduced at 3 h, but there was no reduction at 6, 12 and 24 h in FPI groups when compared to the control and sham groups. Subjects receiving NBOT showed consistent increased DA levels at each time point when compared with Sham and FPI groups. These results suggest that FPI may alter DA levels at the early post-TBI stages but not in later stages. While DA levels increased in 6, 12 and 24 h in the FPI groups, NBOT could be used to accelerate the prevention of early dopaminergic neuronal damage following FPI injury and improve DA levels consistently.
    Matched MeSH terms: Mice, Inbred C57BL
  13. Li H, Liu L, Dang M, Zhang W, Liu J
    Int J Neurosci, 2020 Jun;130(6):533-540.
    PMID: 31516045 DOI: 10.1080/00207454.2019.1667797
    Aim of the Study: This study was designed to explore the relative susceptibility of in vitro fertilization (IVF)-conceived mice to global cerebral ischemic injury with the possible role of hydrogen sulphide and enzymes responsible for its production.Materials and Methods: IVF was carried to obtain pups, which were allowed to grow to the age of eight weeks. Thereafter, male mice were subjected to 20 min of global ischemia and 24 h of reperfusion. The mice obtained from other groups including normal mating, superovulation but normal mating and normal mating but embryo implantation were also subjected to global ischemia-reperfusion (I/R) injury.Results: IVF-derived mice exhibited significant more injury in response to I/R injury in comparison to other groups assessed in terms of impairment in locomotor activity, development of motor in coordination, neurological severity score, cerebral infarction and apoptosis markers (caspase-3 activity and Bcl-2 expression). Moreover, there was a relative decrease in the brain levels of hydrogen sulphide (H2S) and its biosynthetic enzymes viz. cystathionine-β-synthase and cystathionine-γ-lyase. Interestingly, the levels of H2S and cystathionine-γ-lyase were significantly low in IVF-derived mice in basal conditions also, i.e. before subjecting to I/R injury and these biochemical alterations were associated with the behavioural deficits in mice, even before subjecting to I/R injury.Conclusion: It is concluded that in vitro fertilization-derived mice are more susceptible to global cerebral I/R injury, which may be possibly due to decreased levels of hydrogen sulphide and its biosynthetic enzymes viz., cystathionine-β-synthase and cystathionine-γ-lyase.
    Matched MeSH terms: Mice, Inbred C57BL
  14. Lee HC, Md Yusof HH, Leong MP, Zainal Abidin S, Seth EA, Hewitt CA, et al.
    Int J Neurosci, 2019 Sep;129(9):871-881.
    PMID: 30775947 DOI: 10.1080/00207454.2019.1580280
    Aims: The JAK-STAT signalling pathway is one of the key regulators of pro-gliogenesis process during brain development. Down syndrome (DS) individuals, as well as DS mouse models, exhibit an increased number of astrocytes, suggesting an imbalance of neurogenic-to-gliogenic shift attributed to dysregulated JAK-STAT signalling pathway. The gene and protein expression profiles of JAK-STAT pathway members have not been characterised in the DS models. Therefore, we aimed to profile the expression of Jak1, Jak2, Stat1, Stat3 and Stat6 at different stages of brain development in the Ts1Cje mouse model of DS. Methods: Whole brain samples from Ts1Cje and wild-type mice at embryonic day (E)10.5, E15, postnatal day (P)1.5; and embryonic cortex-derived neurospheres were collected for gene and protein expression analysis. Gene expression profiles of three brain regions (cerebral cortex, cerebellum and hippocampus) from Ts1Cje and wild-type mice across four time-points (P1.5, P15, P30 and P84) were also analysed. Results: In the developing mouse brain, none of the Jak/Stat genes were differentially expressed in the Ts1Cje model compared to wild-type mice. However, Western blot analyses indicated that phosphorylated (p)-Jak2, p-Stat3 and p-Stat6 were downregulated in the Ts1Cje model. During the postnatal brain development, Jak/Stat genes showed complex expression patterns, as most of the members were downregulated at different selected time-points. Notably, embryonic cortex-derived neurospheres from Ts1Cje mouse brain expressed lower Stat3 and Stat6 protein compared to the wild-type group. Conclusion: The comprehensive expression profiling of Jak/Stat candidates provides insights on the potential role of the JAK-STAT signalling pathway during abnormal development of the Ts1Cje mouse brains.
    Matched MeSH terms: Mice, Inbred C57BL
  15. Mohamad Najib NH, Yahaya MF, Das S, Teoh SL
    Int J Neurosci, 2023 Dec;133(8):822-833.
    PMID: 34623211 DOI: 10.1080/00207454.2021.1990916
    INTRODUCTION: Parkinson's disease (PD) is the second most common neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Metallothionein has been shown to act as a neuroprotectant in various brain injury. Thus, this study aims to identify the effects of full-length human metallothionein 2 peptide (hMT2) in paraquat-induced brain injury in the zebrafish.

    METHODOLOGY: A total of 80 adult zebrafish were divided into 4 groups namely control, paraquat-treated, pre-hMT2-treated, and post-hMT2-treated groups. Fish were treated with paraquat intraperitoneally every 3 days for 15 days. hMT2 were injected intracranially on day 0 (pre-treated group) and day 16 (post-treated group). Fish were sacrificed on day 22 and the brains were collected for qPCR, ELISA and immunohistochemistry analysis.

    RESULTS: qPCR analysis showed that paraquat treatment down-regulated the expression of genes related to dopamine activity and biosynthesis (dat and th1) and neuroprotective agent (bdnf). Paraquat treatment also up-regulated the expression of the mt2, smtb and proinflammatory genes (il-1α, il-1β, tnf-α and cox-2). hMT2 treatment was able to reverse the effects of paraquat. Lipid peroxidation decreased in the paraquat and pre-hMT2-treated groups. However, lipid peroxidation increased in the post-hMT2-treated group. Paraquat treatment also led to a reduction of dopaminergic neurons while their numbers showed an increase following hMT2 treatment.

    CONCLUSION: Paraquat has been identified as one of the pesticides that can cause the death of dopaminergic neurons and affect dopamine biosynthesis. Treatment with exogenous hMT2 could reverse the effects of paraquat in the zebrafish brain.

    Matched MeSH terms: Mice, Inbred C57BL
  16. Gouk SW, Cheng SF, Ong AS, Chuah CH
    Br J Nutr, 2014 Apr 14;111(7):1174-80.
    PMID: 24286356 DOI: 10.1017/S0007114513003668
    In the present study, we investigated the effect of long-acyl chain SFA, namely palmitic acid (16:0) and stearic acid (18:0), at sn-1, 3 positions of TAG on obesity. Throughout the 15 weeks of the experimental period, C57BL/6 mice were fed diets fortified with cocoa butter, sal stearin (SAL), palm mid fraction (PMF) and high-oleic sunflower oil (HOS). The sn-1, 3 positions were varied by 16:0, 18:0 and 18:1, whilst the sn-2 position was preserved with 18:1. The HOS-enriched diet was found to lead to the highest fat deposition. This was in accordance with our previous postulation. Upon normalisation of total fat deposited with food intake to obtain the fat:feed ratio, interestingly, mice fed the SAL-enriched diet exhibited significantly lower visceral fat/feed and total fat/feed compared with those fed the PMF-enriched diet, despite their similarity in SFA-unsaturated fatty acid-SFA profile. That long-chain SFA at sn-1, 3 positions concomitantly with an unsaturated FA at the sn-2 position exert an obesity-reducing effect was further validated. The present study is the first of its kind to demonstrate that SFA of different chain lengths at sn-1, 3 positions exert profound effects on fat accretion.
    Matched MeSH terms: Mice, Inbred C57BL
  17. Gouk SW, Cheng SF, Mok JS, Ong AS, Chuah CH
    Br J Nutr, 2013 Dec 14;110(11):1987-95.
    PMID: 23756564 DOI: 10.1017/S0007114513001475
    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.
    Matched MeSH terms: Mice, Inbred C57BL
  18. Ghazalli N, Wu X, Walker S, Trieu N, Hsin LY, Choe J, et al.
    Stem Cells Dev, 2018 07 01;27(13):898-909.
    PMID: 29717618 DOI: 10.1089/scd.2017.0160
    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
    Matched MeSH terms: Mice, Inbred C57BL
  19. Lan YW, Choo KB, Chen CM, Hung TH, Chen YB, Hsieh CH, et al.
    Stem Cell Res Ther, 2015;6:97.
    PMID: 25986930 DOI: 10.1186/s13287-015-0081-6
    Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs.
    Matched MeSH terms: Mice, Inbred C57BL
  20. Mitutsova V, Yeo WWY, Davaze R, Franckhauser C, Hani EH, Abdullah S, et al.
    Stem Cell Res Ther, 2017 04 18;8(1):86.
    PMID: 28420418 DOI: 10.1186/s13287-017-0539-9
    BACKGROUND: Pancreatic beta cells are unique effectors in the control of glucose homeostasis and their deficiency results in impaired insulin production leading to severe diabetic diseases. Here, we investigated the potential of a population of nonadherent muscle-derived stem cells (MDSC) from adult mouse muscle to differentiate in vitro into beta cells when transplanted as undifferentiated stem cells in vivo to compensate for beta-cell deficiency.

    RESULTS: In vitro, cultured MDSC spontaneously differentiated into insulin-expressing islet-like cell clusters as revealed using MDSC from transgenic mice expressing GFP or mCherry under the control of an insulin promoter. Differentiated clusters of beta-like cells co-expressed insulin with the transcription factors Pdx1, Nkx2.2, Nkx6.1, and MafA, and secreted significant levels of insulin in response to glucose challenges. In vivo, undifferentiated MDSC injected into streptozotocin (STZ)-treated mice engrafted within 48 h specifically to damaged pancreatic islets and were shown to differentiate and express insulin 10-12 days after injection. In addition, injection of MDSC into hyperglycemic diabetic mice reduced their blood glucose levels for 2-4 weeks.

    CONCLUSION: These data show that MDSC are capable of differentiating into mature pancreatic beta islet-like cells, not only upon culture in vitro, but also in vivo after systemic injection in STZ-induced diabetic mouse models. Being nonteratogenic, MDSC can be used directly by systemic injection, and this potential reveals a promising alternative avenue in stem cell-based treatment of beta-cell deficiencies.

    Matched MeSH terms: Mice, Inbred C57BL
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links