Displaying all 7 publications

Abstract:
Sort:
  1. Geml J, Morgado LN, Semenova-Nelsen TA, Schilthuizen M
    New Phytol, 2017 Jul;215(1):454-468.
    PMID: 28401981 DOI: 10.1111/nph.14566
    The distribution patterns of tropical ectomycorrhizal (ECM) fungi along altitudinal gradients remain largely unknown. Furthermore, despite being an iconic site for biodiversity research, virtually nothing is known about the diversity and spatial patterns of fungi on Mt Kinabalu and neighbouring mountain ranges. We carried out deep DNA sequencing of soil samples collected between 425 and 4000 m above sea level to compare richness and community composition of ECM fungi among altitudinal forest types in Borneo. In addition, we tested whether the observed patterns are driven by habitat or by geometric effect of overlapping ranges of species (mid-domain effect). Community composition of ECM fungi was strongly correlated with elevation. In most genera, richness peaked in the mid-elevation montane forest zone, with the exception of tomentelloid fungi, which showed monotonal decrease in richness with increasing altitude. Richness in lower-mid- and mid-elevations was significantly greater than predicted under the mid-domain effect model. We provide the first insight into the composition of ECM fungal communities and their strong altitudinal turnover in Borneo. The high richness and restricted distribution of many ECM fungi in the montane forests suggest that mid-elevation peak richness is primarily driven by environmental characteristics of this habitat and not by the mid-domain effect.
    Matched MeSH terms: Mycorrhizae/physiology*
  2. Zhong Y, Chu C, Myers JA, Gilbert GS, Lutz JA, Stillhard J, et al.
    Nat Commun, 2021 May 25;12(1):3137.
    PMID: 34035260 DOI: 10.1038/s41467-021-23236-3
    Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
    Matched MeSH terms: Mycorrhizae/physiology*
  3. Senthilkumar S
    Med J Malaysia, 2004 May;59 Suppl B:218-9.
    PMID: 15468896
    Matched MeSH terms: Mycorrhizae/physiology*
  4. Helbert, Turjaman M, Nara K
    PLoS One, 2019;14(9):e0221998.
    PMID: 31498844 DOI: 10.1371/journal.pone.0221998
    In Southeast Asia, primary tropical rainforests are usually dominated by ectomycorrhizal (ECM) trees belonging to Dipterocarpaceae, although arbuscular mycorrhizal trees often outcompete them after disturbances such as forest fires and clear-cutting, thus preventing dipterocarp regeneration. In some secondary tropical forests, however, potentially ECM trees belonging to Tristaniopsis (Myrtaceae) become dominant and may help ECM dipterocarp forests to recover. However, we have no information about their mycorrhizal status in these settings. In this study, we analyzed ECM fungal communities in tropical secondary forests dominated by Tristaniopsis and investigated which ECM fungal species are shared with other tropical or temperate areas. In total, 100 samples were collected from four secondary forests dominated by Tristaniopsis on Bangka Island. ECM tips in the soil samples were subjected to molecular analyses to identify both ECM and host species. Based on a >97% ITS sequence similarity threshold, we identified 56 ECM fungal species dominated by Thelephoraceae, Russulaceae, and Clavulinaceae. Some of the ECM fungal species were shared between dominant Tristaniopsis and coexisting Eucalyptus or Quercus trees, including 5 common to ECM fungi recorded in a primary mixed dipterocarp forest at Lambir Hill, Malaysia. In contrast, no ECM fungal species were shared with other geographical regions, even with Tristaniopsis in New Caledonia. These results imply that secondary tropical forests dominated by Tristaniopsis harbor diverse ECM fungi, including those that inhabit primary dipterocarp forests in the same geographical region. They may function as refugia for ECM fungi, given that dipterocarp forests are disappearing quickly due to human activity.
    Matched MeSH terms: Mycorrhizae/physiology
  5. Tan YC, Wong MY, Ho CL
    Plant Physiol Biochem, 2015 Nov;96:296-300.
    PMID: 26322853 DOI: 10.1016/j.plaphy.2015.08.014
    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system.
    Matched MeSH terms: Mycorrhizae/physiology*
  6. Séne S, Selosse MA, Forget M, Lambourdière J, Cissé K, Diédhiou AG, et al.
    ISME J, 2018 06;12(7):1806-1816.
    PMID: 29535364 DOI: 10.1038/s41396-018-0088-y
    Global trade increases plant introductions, but joint introduction of associated microbes is overlooked. We analyzed the ectomycorrhizal fungi of a Caribbean beach tree, seagrape (Coccoloba uvifera, Polygonacaeae), introduced pantropically to stabilize coastal soils and produce edible fruits. Seagrape displays a limited symbiont diversity in the Caribbean. In five regions of introduction (Brazil, Japan, Malaysia, Réunion and Senegal), molecular barcoding showed that seagrape mostly or exclusively associates with Scleroderma species (Basidiomycota) that were hitherto only known from Caribbean seagrape stands. An unknown Scleroderma species dominates in Brazil, Japan and Malaysia, while Scleroderma bermudense exclusively occurs in Réunion and Senegal. Population genetics analysis of S. bermudense did not detect any demographic bottleneck associated with a possible founder effect, but fungal populations from regions where seagrape is introduced are little differentiated from the Caribbean ones, separated by thousands of kilometers, consistently with relatively recent introduction. Moreover, dry seagrape fruits carry Scleroderma spores, probably because, when drying on beach sand, they aggregate spores from the spore bank accumulated by semi-hypogeous Scleroderma sporocarps. Aggregated spores inoculate seedlings, and their abundance may limit the founder effect after seagrape introduction. This rare pseudo-vertical transmission of mycorrhizal fungi likely contributed to efficient and repeated seagrape/Scleroderma co-introductions.
    Matched MeSH terms: Mycorrhizae/physiology*
  7. Mennes CB, Moerland MS, Rath M, Smets EF, Merckx VS
    Am J Bot, 2015 Apr;102(4):598-608.
    PMID: 25878092 DOI: 10.3732/ajb.1400549
    The mycoheterotrophic lifestyle has enabled some plant lineages to obtain carbon from their mycorrhizal symbionts. The mycoheterotrophic genus Epirixanthes (Polygalaceae) consists of six species from tropical Asia. Although it is probably closely related to the chlorophyllous genus Salomonia and linked to arbuscular mycorrhizal fungi, lack of DNA sequence data has thus far prevented these hypotheses from being tested. Therefore, the evolutionary history of Epirixanthes remains largely unknown.
    Matched MeSH terms: Mycorrhizae/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links