METHODS: Data from 585 eligible patients who received palliative radiotherapy between January 2012 and December 2014 were analysed. Median overall survival was calculated from the commencement of first fraction of the last course of radiotherapy to date of death or when censored. 30-DM was calculated as the proportion of patients who died within 30 days from treatment start date. Kaplan-Meier survival analysis was used to estimate survival. Chi-square test and logistic regression was used to assess the impact of potential prognostic factors on median survival and 30-DM.
RESULTS: The most common diagnoses were lung and breast cancers and most common irradiated sites were bone and brain. Median survival and 30-DM were 97 days and 22.7% respectively. Primary cancer, age, treatment course, performance status, systemic treatment post radiotherapy and intended radiotherapy treatment completed had an impact on median survival whereas mainly the latter three factors had an impact on 30-DM.
CONCLUSION: Median survival and factors affecting both survival and 30-DM in our study are comparable to others. However, a 30-DM rate of 22.7% is significantly higher compared to the literature. We need to better select patients who will benefit from palliative radiotherapy in our centre.
METHODS: The [152Sm]Sm2O3-PS microspheres were synthesized using solid-in-oil-in-water solvent evaporation. The microspheres underwent neutron activation using a 1 MW open-pool research reactor to produce radioactive [153Sm]Sm2O3-PS microspheres via 152Sm(n,γ)153Sm reaction. Physicochemical characterization, gamma spectroscopy and in-vitro radionuclide retention efficiency were carried out to evaluate the properties and stability of the microspheres before and after neutron activation.
RESULTS: The [153Sm]Sm2O3-PS microspheres achieved specific activity of 5.04 ± 0.52 GBq·g-1 after a 6 h neutron activation. Scanning electron microscopy and particle size analysis showed that the microspheres remained spherical with an average diameter of ~33 μm before and after neutron activation. No long half-life radionuclide and elemental impurities were found in the samples. The radionuclide retention efficiencies of the [153Sm]Sm2O3-PS microspheres at 550 h were 99.64 ± 0.07 and 98.76 ± 1.10% when tested in saline solution and human blood plasma, respectively.
CONCLUSIONS: A neutron-activated [153Sm]Sm2O3-PS microsphere formulation was successfully developed for potential application as a theranostic agent for liver radioembolization. The microspheres achieved suitable physical properties for radioembolization and demonstrated high radionuclide retention efficiency in saline solution and human blood plasma.
METHODOLOGY: A retrospective study of 865 patients was performed at Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital to investigate the feasibility of selective ND (SND). All patients with squamous cell carcinoma of the pharynx and larynx who received primary radiation and underwent salvage ND were included in the study.
RESULT: A total of 29 NDs were analyzed. In 17 neck sides, viable metastases were found (58%), whereas in the other 12 specimens there were no viable metastases. In 16 of the 17 necks (94%), the metastases were located either in level II, III, or IV or in a combination of these 3 levels. Level V was involved in only 1 case (6%).
CONCLUSION: It is well justified to perform a salvage SND (levels II, III, and IV) for pharyngeal and laryngeal carcinoma after primary radiation. In carefully selected cases of supraglottic and oropharyngeal carcinoma, a superselective ND also appears as an efficient option.