Displaying all 5 publications

Abstract:
Sort:
  1. Hossain MZ, Daud S, Nambiar P, Razak FA, Ab-Murat N, Saub R, et al.
    Arch Oral Biol, 2017 Aug;80:51-55.
    PMID: 28371626 DOI: 10.1016/j.archoralbio.2017.03.018
    OBJECTIVE: The aim of this study was to investigate correlations between dental pulp cell count of odontoblasts, subodontoblasts and fibroblasts and age, within different age groups. Formulation of regression equations using the dental pulp cell count for predicting age was attempted.

    DESIGN: Eighty-one extracted teeth were grouped into two age groups (6-25 years, 26-80 years). The teeth were demineralized and histological sections were prepared for cell count. Regression equations were generated from regression analysis of cell count and tested for age estimation.

    RESULTS: The number of dental pulp cells were found to increase until around the third decade of life and following this, the odontoblasts and subodontoblasts cell numbers began to decline while the fibroblasts seemed to remain almost stationary. The Pearson correlation test revealed a significant positive correlation between the cell number for all type of cells and age in the 6-25 years group (r=+0.791 for odontoblasts, r=+0.600 for subodontoblasts and r=+0.680 for fibroblasts). In the 26-80 years age group, a significant negative correlation of the odontoblasts (r=-0.777) and subodontoblasts (r=-0.715) with age was observed but for fibroblasts, the correlation value was negligible (r=-0.165). Regression equations generated using odontoblasts and subodontoblasts cell number were applicable for age estimation. The standard error of estimates (SEEs) were around±5years for 6-25 years and±8years for 26-80 years age groups. The mean values of the estimated and chronological ages were not significantly different.

    CONCLUSIONS: A significant correlation between the cell count of odontoblasts and subodontoblasts with age was demonstrated. Regression equations using odontoblasts and subodontoblasts cell number can be used to predict age with some limitations.

    Matched MeSH terms: Odontoblasts
  2. Mohd. Bakri, M., Whittaker, D.A.
    Ann Dent, 2003;10(1):-.
    MyJurnal
    The ultrastructure of the odontoblast reflects the certain phases that the cell undergoes in their lifecycle. Ultrastructure studies of the odontoblasts have often been carried out using young teeth. In this study, teeth from an older individual have been used to study the odontoblasts from the crown and root area. The odontoblasts from the crown area retain their columnar shape while odontoblasts from the root area appeared to be flattened. The organelles present in the odontoblasts either from the crown or root area was observed to be reduced.
    Matched MeSH terms: Odontoblasts
  3. Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J
    Int J Mol Sci, 2019 Jan 27;20(3).
    PMID: 30691193 DOI: 10.3390/ijms20030526
    Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
    Matched MeSH terms: Odontoblasts/metabolism
  4. AbdulQader ST, Kannan TP, Rahman IA, Ismail H, Mahmood Z
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:225-233.
    PMID: 25686943 DOI: 10.1016/j.msec.2014.12.070
    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration.
    Matched MeSH terms: Odontoblasts/drug effects; Odontoblasts/metabolism
  5. Ariffin SH, Manogaran T, Abidin IZ, Wahab RM, Senafi S
    Curr Stem Cell Res Ther, 2017;12(3):247-259.
    PMID: 27784228 DOI: 10.2174/1574888X11666161026145149
    Stem cells (SCs) are capable of self-renewal and multilineage differentiation. Human mesenchymal stem cells (MSCs) and haematopoietic stem cells (HSCs) which can be obtained from multiple sources, are suitable for application in regenerative medicine and transplant therapy. The aim of this review is to evaluate the potential of genomic and proteomic profiling analysis to identify the differentiation of MSCs and HSCs towards osteoblast and odontoblast lineages. In vitro differentiation towards both of these lineages can be induced using similar differentiation factors. Gene profiling cannot be utilised to confirm the lineages of these two types of differentiated cells. Differentiated cells of both lineages express most of the same markers. Most researchers have detected the expression of genes such as ALP, OCN, OPN, BMP2 and RUNX2 in osteoblasts and the expression of the DSPP gene in odontoblasts. Based on their cell-type specific protein profiles, various proteins are differentially expressed by osteoblasts and odontoblasts, except for vimentin and heterogeneous nuclear ribonucleoprotein C, which are expressed in both cell types, and LOXL2 protein, which is expressed only in odontoblasts.
    Matched MeSH terms: Odontoblasts/cytology; Odontoblasts/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links