Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Rad S, Shamsudin S, Taha MR, Shahid S
    Water Sci Technol, 2016;73(2):405-13.
    PMID: 26819397 DOI: 10.2166/wst.2015.465
    The photo-degradation of nutrients in stormwater in photocatalytic reactor wet detention pond using nano titanium dioxide (TiO2) in concrete was investigated in a scale model as a new stormwater treatment method. Degradation of phosphate and nitrate in the presence of nano-TiO2 under natural ultra violet (UV) from tropical sunlight was monitored for 3 weeks compared with normal ponds. Two types of cement, including ordinary Portland and white cement mixed with TiO2 nano powder, were used as a thin cover to surround the body of the pond. Experiments with and without the catalyst were carried out for comparison and control. Average Anatase diameter of 25 nm and Rutile 100 nm nano particles were applied at three different mixtures of 3, 10 and 30% weight. The amounts of algae available orthophosphate and nitrate, which cause eutrophication in the ponds, were measured during the tests. Results revealed that the utilization of 3% up to 30% weight nano-TiO2 can improve stormwater outflow quality by up to 25% after 48 h and 57% after 3 weeks compared with the control sample in normal conditions with average nutrient (phosphate and nitrate) removal of 4% after 48 h and 10% after 3 weeks.
    Matched MeSH terms: Photolysis*
  2. Bahrudin NN, Nawi MA, Zainal Z, Schneider R, Sabar S
    Water Sci Technol, 2020 Aug;82(3):454-467.
    PMID: 32960791 DOI: 10.2166/wst.2020.349
    Many attempts have been made to improve the photocatalytic performance of immobilized photocatalysts for large-scale applications by modification of the photocatalyst properties. In this work, immobilized bilayer photocatalyst composed of titanium dioxide (TiO2) and chitosan-montmorillonite (CS-MT) were prepared in a layer-by-layer arrangement supported on glass substrate. This arrangement allows a simultaneous occurrence of adsorption and photocatalysis processes of pollutants, whereby each layer could be independently modified and controlled to acquire the desired degree of occurring processes. It was found that the addition of MT clay within the CS composite sub-layer improved the mechanical strength of CS, reduced its swelling and shifted its absorption threshold to higher wavelengths. In addition, the band gap energy of the photocatalyst was also reduced to 2.93 eV. The immobilized TiO2/CS-MT exhibited methyl orange (MO) decolourization rate of 0.071 min-1 under light irradiation, which is better than the single TiO2 due to the synergistic processes of adsorption by CS-MT and photocatalysis by TiO2 layer. The MO dye took 6 h to achieve complete mineralization and produced sulfate and nitrate ions as the by-products. Furthermore, the immobilized TiO2/CS-MT could be reused for at least ten cycles of application without significant loss of its activity.
    Matched MeSH terms: Photolysis
  3. Faisal M, Iqbal A, Adam F, Jothiramalingam R
    Water Sci Technol, 2021 Aug;84(3):576-595.
    PMID: 34388120 DOI: 10.2166/wst.2021.244
    Cu doped InVO4 (xCu-InVO4 (x = 0.06-0.15 wt %) was synthesized by a facile one-pot hydrothermal method for the removal of methylene blue (MB) under LED light irradiation. The X-ray photoelectron spectroscopy (XPS) analysis indicated the coexistence of V5+ and V4+ species due to the O-deficient nature of the xCu-InVO4. The synthesized photocatalysts displayed a morphology of spherical and square shaped particles (20-40 nm) and micro-sized rectangle rods with a length range of 100-200 μm. The xCu-InVO4 exhibited superior adsorption and photodegradation efficiency compared to pristine InVO4 and TiO2 due to the presence of O2 vacancies, V4+/V5+ species, and Cu dopant. The optimum reaction conditions were found to be 5 mg L-1 (MB concentration), pH 6, and 100 mg of photocatalyst mass with a removal efficiency and mineralization degree of 100% and 96.67%, respectively. The main active species responsible for the degradation of MB were •OH radicals and h+. Reusability studies indicated that the 0.13Cu-InVO4 was deactivated after a single cycle of photocatalytic reaction due to significant leaching of V4+ and Cu2+ species.
    Matched MeSH terms: Photolysis
  4. Abdollahi Y, Sabbaghi S, Abouzari-Lotf E, Jahangirian H, Sairi NA
    Water Sci Technol, 2018 Mar;77(5-6):1493-1504.
    PMID: 29595152 DOI: 10.2166/wst.2018.017
    The global attention has been focused on degradation of the environmental organic pollutants through green methods such as advanced oxidation processes (AOPs) under sunlight. However, AOPs have not yet been efficient in function of the photocatalyst that has been used. In this work, firstly, CaCu3Ti4O12 nanocomposite was simultaneously synthesized and decorated in different amounts of graphene oxide to enhance photodegradation of the organics. The result of the photocatalyst characterization showed that the sample with 8% graphene presented optimum photo-electrical properties such as low band gap energy and a great surface area. Secondly, the photocatalyst was applied for photodegradation of an organic model in a batch photoreactor. Thirdly, to scale up the process and optimize the efficiency, the photodegradation was modeled by multivariate semi-empirical methods. As the optimized condition showed, 45 mg/L of the methyl-orange has been removed at pH 5.8 by 0.96 g/L of the photocatalyst during 288 min of the light irradiation. Moreover, the photodegradation has been scaled up for industrial applications by determining the importance of the input effective variables according to the following organics order > photocatalyst > pH > irradiation time.
    Matched MeSH terms: Photolysis*
  5. Lee KM, Lai CW, Ngai KS, Juan JC
    Water Res, 2016 Jan 01;88:428-448.
    PMID: 26519627 DOI: 10.1016/j.watres.2015.09.045
    Today, a major issue about water pollution is the residual dyes from different sources (e.g., textile industries, paper and pulp industries, dye and dye intermediates industries, pharmaceutical industries, tannery and craft bleaching industries, etc.), and a wide variety of persistent organic pollutants have been introduced into our natural water resources or wastewater treatment systems. In fact, it is highly toxic and hazardous to the living organism; thus, the removal of these organic contaminants prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade those organic contaminants and advanced heterogeneous photocatalysis involving zinc oxide (ZnO) photocatalyst appears to be one of the most promising technology. In recent years, ZnO photocatalyst have attracted much attention due to their extraordinary characteristics. The high efficiency of ZnO photocatalyst in heterogeneous photocatalysis reaction requires a suitable architecture that minimizes electron loss during excitation state and maximizes photon absorption. In order to further improve the immigration of photo-induced charge carriers during excitation state, considerable effort has to be exerted to further improve the heterogeneous photocatalysis under UV/visible/solar illumination. Lately, interesting and unique features of metal doping or binary oxide photocatalyst system have gained much attention and became favourite research matter among various groups of scientists. It was noted that the properties of this metal doping or binary oxide photocatalyst system primarily depend on the nature of the preparation method and the role of optimum dopants content incorporated into the ZnO photocatalyst. Therefore, this paper presents a critical review of recent achievements in the modification of ZnO photocatalyst for organic contaminants degradation.
    Matched MeSH terms: Photolysis*
  6. FARAH EILYANA MOHAMED
    MyJurnal
    Solar photocatalysis is a green technology that takes advantage of sustainable solar energy for enhancing oxidation process of numerous harmful water contaminants. In this study, a custom solar driven zinc oxide (ZnO)-mediated photocatalytic system was developed and its efficiency to remove organic contaminants as well as to disinfect selected bacteria was investigated. Methylene blue (MB) dye was used as the model organic contaminant, while Escherichia coli(E.coli) was used as the model fecal coliform bacteria in contaminated water. A series of photodegradation experiments were conducted on water contaminated with either 10 mg/L of MB or ~1010CFU/ml of E.coli. The experiments were completed under sunlight irradiation in the presence of 1 g/L of nano ZnO photocatalyst for up to 6 hours. Using a solar thermal collector, the photoreactor operated in the temperature range of 25 to 50 oC. The findings revealed that the combination of solar thermal with solar photocatalysis usingZnO intensified the degradation of MB and disinfection of E.coli. 98.08% of MB dye and 99.99% of E.coliwere successfully removed from the water within the first 3 hours of treatment. Almost complete removal was eventually achieved after 6 hours of treatment. It is therefore suggested that ZnO-based solar photocatalytic system developed in this study is highly efficient at enhancing water decontamination process.
    Matched MeSH terms: Photolysis
  7. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S
    ScientificWorldJournal, 2014;2014:692307.
    PMID: 25054183 DOI: 10.1155/2014/692307
    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.
    Matched MeSH terms: Photolysis*
  8. Lange E, Lozano AI, Jones NC, Hoffmann SV, Kumar S, Śmiałek MA, et al.
    J Phys Chem A, 2020 Sep 30.
    PMID: 32941031 DOI: 10.1021/acs.jpca.0c06615
    We investigate the methanol absorption spectrum in the range 5.5-10.8 eV to provide accurate and absolute cross-sections values. The main goal of this study is to provide a comprehensive analysis of methanol electronic-state spectroscopy by employing high-resolution vacuum ultraviolet (VUV) photoabsorption measurements together with state-of-the-art quantum chemical calculation methods. The VUV spectrum reveals several new features that are not previously reported in literature, for n > 3 in the transitions (nsσ(a') ← (2a″)) (1A' ← X̃1A') and (nsσ, npσ, npσ', ndσ ← (7a')) (1A' ← X̃1A'), and with particular relevance to vibrational progressions of the CH3 rocking mode, v11'(a″), mode in the (3pπ(a″) ← (2a″)) (21A' ← X̃1A') absorption band at 8.318 eV. The measured absolute photoabsorption cross-sections have subsequently been used to calculate the photolysis lifetime of methanol in the Earth's atmosphere from the ground level up to the limit of the stratosphere (50 km altitude). This shows that solar photolysis plays a negligible role in the removal of methanol from the lower atmosphere compared with competing sink mechanisms. Torsional potential energy scans, as a function of the internal rotation angle for the ground and first Rydberg states, have also been calculated as part of this investigation.
    Matched MeSH terms: Photolysis
  9. Yousif, Emad, Ahmed, Dina S., Ahmed, Ahmed A., Hameed, Ayad S., Yusop, Rahimi M., Redwan, Amamer, et al.
    Science Letters, 2018;12(2):19-27.
    MyJurnal
    The photodegradation rate constant and surface morphology of poly(vinyl chloride), upon irradiation with ultraviolet light was investigated in the presence of polyphosphates as photostabilizers. Poly(vinyl chloride) photodegradation rate constant was lower for the films containing polyphosphates compared to the blank film. In addition, the surface morphology of the irradiated poly(vinyl chloride) containing polyphosphates, examined by scanning electron microscopy, indicates that the surface was much smoother compared to the blank film.
    Matched MeSH terms: Photolysis
  10. Azami MS, Nawawi WI, Ali H. Jawad, Ishak MAM, Azami MS, K. Ismail
    Sains Malaysiana, 2017;46:1390-1316.
    Nitrogen doped titanium dioxide (N-doped TiO2
    ) was synthesized by microwave using urea as nitrogen sources with
    commercially available TiO2
    -P25. The N-doped TiO2
    was compared with unmodified TiO2
    by carrying out the investigation
    on its properties using x-ray diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET), Fourier transformed infrared
    spectroscopy (FTIR) and diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalytic activities of N-doped TiO2
    and unmodified TiO2 were studied for photodegradation of reactive red 4 (RR4) under light emitting diode (LED) light
    irradiation. An active photoresponse under LED light irradiation was observed from N-doped TiO2
    with 60 min of time
    irradiation to complete RR4 color removal while no photocatalytic degradation was observed from unmodified.
    Matched MeSH terms: Photolysis
  11. Anwar N, Kassim A, Lim H, Zakarya S, Huang N
    Sains Malaysiana, 2010;39:261-265.
    Titanium dioxide nanoparticles were synthesized via low-temperature sucrose ester micelle-mediated hydrothermal processing route using titanium isopropoxide as the precursor. X-ray diffractometer revealed that the samples possessed a mixed crystalline phases consisting of anatase and brookite in which anatase was the main phase. Upon increasing the hydrothermal reaction temperature, the degree of crystallinity of the nanoparticles improved and their morphology transformed from bundles of needles to rods and to spheres. Photocatalytic behaviour of the as-synthesized nanoparticles was investigated by photodegradation of methylene blue solution in an ultraviolet A irradiating photoreactor. The as-synthesized nanoparticles exhibited higher photocatalytic performance as compared to the commercial counterpart.
    Matched MeSH terms: Photolysis
  12. Joon Ching Juan, Sze Nee Goh, Ta Yeong Wu, Emy Marlina Samsudin, Tan Tong Ling, Sharifah Bee Abd. Hamid
    Sains Malaysiana, 2015;44:1011-1019.
    Disposal of dye wastewater into water streams without treatment endangers human and marine lives. This work focused on the second largest class of textile dyes after azo dyes due to its high resistivity to biodegradation and high toxicity. The photocatalytic degradation of Reactive Blue 4 (RB4), an anthraquinone dye, has been investigated using pure anatase nano titanium (IV) oxide (TiO2). The dye molecules were fully degraded and the addition of hydrogen peroxide (H2O2) enhanced the photodegradation efficiency. It is found that the degradation as the hydroxyl radicals in the bulk solution is sufficient for complete mineralisation. The disappearance of the dye follows pseudo-first-order kinetics. The effect of pH, amount of photocatalyst, UV-light intensity, light source and concentration of hydrogen peroxide was ascertained.
    Matched MeSH terms: Photolysis
  13. Ruslimie C, Hasmizam Razali, Wan M. Khairul
    Sains Malaysiana, 2011;40:1179-1186.
    Titanium dioxide photocatalyst was synthesised by microemulsions method under controlled hydrolysis of titanium butoxide, Ti(O(CH2)3)CH3. The synthesised TiO2 photocatalyst was compared with Sigma-commercial TiO2 by carrying out the investigation on its properties using scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis and thermal gravimetric analysis (TGA). The photocatalytic activities for both photocatalysts were studied for atrazine photodegradation.
    Matched MeSH terms: Photolysis
  14. Nikathirah Yusoff, Li-ngee Ho, Soon-an Ong, Yee-shian Wong, Wanfadhilah Khalik, Muhammad Fahmi Ridzwan
    Sains Malaysiana, 2017;46:2507-2514.
    Zinc oxide (ZnO) utilization in advanced oxidation process (AOP) via solar-photocatalytic process was a promising method for alternative treating wastewater containing phenol. The ZnO photocatalyst semiconductor was synthesized by sol-gel method. The morphology of the ZnO nanostructures was observed by using scanning electron microscope (SEM) and the crystallite phase of the ZnO was confirmed by x-ray diffraction (XRD). The objective of this study was to synthesis ZnO nanoparticles through a sol-gel method for application as a photocatalyst in the photodegradation of phenol under solar light irradiation. The photodegradation rate of phenol increased with the increasing of ZnO loading from 0.2 until 1.0 g. Only 2 h were required for synthesized ZnO to fully degrade the phenol. The synthesized ZnO are capable to totally degrade high initial concentration up until 45 mg L-1 within 6 h of reaction time. The photodegradation of phenol by ZnO are most favoured under the acidic condition (pH3) where the 100% removal achieved after 2 h of reaction. The mineralization of phenol was monitored through chemical oxygen demand (COD) reduction and 92.6% or removal was achieved. This study distinctly utilized natural sunlight as the sole sources of irradiation which safe, inexpensive; to initiate the photocatalyst for degradation of phenol.
    Matched MeSH terms: Photolysis
  15. Sirimahachai R, Harome H, Wongnawa S
    Sains Malaysiana, 2017;46:1393-1399.
    AgCl/BiYO3
    composite was successfully synthesized via the aqueous precipitation method followed by calcination. The
    varied amount of AgCl (10, 20 and 30%) was mixed into BiYO3
    via sonochemical-assisted method. The structures and
    morphologies of the as-prepared AgCl/BiYO3
    composite were characterized by x-ray diffraction (XRD), scanning electron
    microscopy (SEM) and UV-vis diffused reflectance spectroscopy (UV-vis DRS). The optical absorption spectrum of AgCl/
    BiYO3
    composite showed strong absorption in visible region. The photocatalytic activity of AgCl/BiYO3
    composite was
    evaluated by the photodegradation of reactive orange16 (RO16), which was selected to represent the dye pollutants,
    under UV and visible light irradiation. The results indicated that 20% AgCl/BiYO3 photocatalyst was the most capable
    photocatalyst in this series in the degradation of RO16 under both UV and visible light illumination within 1 h. Moreover,
    the mechanism of photocatalytic degradation of AgCl/BiYO3
    was elucidated using three types of free radical scavengers.
    The significant enhancement was attributed to the formation of AgCl/BiYO3
    heterojunction resulting in the low electronhole
    pair recombination rate.
    Matched MeSH terms: Photolysis
  16. Mulyati S, Muchtar S, Arahman N, Syamsuddin Y, Mat Nawi NI, Yub Harun N, et al.
    Polymers (Basel), 2020 Sep 09;12(9).
    PMID: 32916778 DOI: 10.3390/polym12092051
    Polydopamine has been widely used as an additive to enhance membrane fouling resistance. This study reports the effects of two-step dopamine-to-polydopamine modification on the permeation, antifouling, and potential anti-UV properties of polyethersulfone (PES)-based ultrafiltration membranes. The modification was performed through a two-step mechanism: adding the dopamine additive followed by immersion into Tris-HCl solution to allow polymerization of dopamine into polydopamine (PDA). The results reveal that the step of treatment, the concentration of dopamine in the first step, and the duration of dipping in the Tris solution in the second step affect the properties of the resulting membranes. Higher dopamine loadings improve the pure water flux (PWF) by more than threefold (15 vs. 50 L/m2·h). The extended dipping period in the Tris alkaline buffer leads to an overgrowth of the PDA layer that partly covers the surface pores which lowers the PWF. The presence of dopamine or polydopamine enhances the hydrophilicity due to the enrichment of hydrophilic catechol moieties which leads to better anti-fouling. Moreover, the polydopamine film also improves the membrane resistance to UV irradiation by minimizing photodegradation's occurrence.
    Matched MeSH terms: Photolysis
  17. Ibrahim S, Othman N, Sreekantan S, Tan KS, Mohd Nor Z, Ismail H
    Polymers (Basel), 2018 Nov 01;10(11).
    PMID: 30961141 DOI: 10.3390/polym10111216
    Natural rubber is one of the most important renewable biopolymers used in many applications due to its special properties that cannot be easily mimicked by synthetic polymers. To sustain the existence of natural rubber in industries, modifications have been made to its chemical structure from time to time in order to obtain new properties and to enable it to be employed in new applications. The chemical structure of natural rubber can be modified by exposure to ultraviolet light to reduce its molecular weight. Under controlled conditions, the natural rubber chains will be broken by photodegradation to yield low-molecular-weight natural rubber. The aim of this work was to obtain what is known as liquid natural rubber via photodegradation, with titanium dioxide nanocrystals as the catalyst. Titanium dioxide, which was firstly synthesized using the sol⁻gel method, was confirmed to be in the form of an anatase, with a size of about 10 nm. In this work, the photodegradation was carried out in latex state and yielded low-molecular-weight natural rubber latex of less than 10,000 g/mol. The presence of hydroxyl and carbonyl groups on the liquid natural rubber (LNR) chains was observed, resulting from the breaking of the chains. Scanning electron microscopy of the NR latex particles showed that titanium dioxide nanocrystals were embedded on the latex surface, but then detached during the degradation reaction.
    Matched MeSH terms: Photolysis
  18. Basiron N, Sreekantan S, Kang LJ, Akil HM, Mydin RBSMN
    Polymers (Basel), 2020 Feb 09;12(2).
    PMID: 32050485 DOI: 10.3390/polym12020394
    The polyvinyl alcohol (PVA) and neem extract were grafted onto coupled oxides (3ZT-CO) via reflux process to stabilize the particles to form 3ZT-CO/PVA and 3ZT-CO/Neem. These were then incorporated into LLDPE by melt blending process to give LLDPE/3ZT-CO/PVA and LLDPE/3ZT-CO/Neem composites. The Neem and PVA stabilized particles showed high zeta potential and dispersed homogeneously in water. The stabilization process altered the shape of the particles due to plane growth along the (002) polar direction. The stabilizers acted as capping agents and initiated the one-dimensional growth. The alkyl chain groups from PVA increased the polarity of the LLDPE/3ZT-CO/PVA and played a dominant role in the water adsorption process to activate the photocatalytic activity. This was further enhanced by the homogeneous distribution of the particles and low degree of crystallinity (20.87%) of the LLDPE composites. LLDPE/3ZT-CO/PVA exhibited the highest photodegradation (93.95%), which was better than the non-stabilized particles. Therefore, the photocatalytic activity of a polymer composite can be enhanced by grafting PVA and neem onto couple oxides. The LLDPE/3ZT-CO/PVA composite was further used to treat textile effluent. The results showed the composite was able to remove dye color by 93.95% and to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) by 99.99%.
    Matched MeSH terms: Photolysis
  19. Abdullahi N, Saion E, Shaari AH, Al-Hada NM, Keiteb A
    PLoS One, 2015;10(5):e0125511.
    PMID: 25993127 DOI: 10.1371/journal.pone.0125511
    MWCNTs/TiO2 nanocomposite was prepared by oxidising MWCNT in H2SO4/HNO3 then decorating it with TiO2-p25 nanopowder. The composites were characterised using XRD, TEM, FT-IR PL and UV-vis spectroscopy. The TEM images have shown TiO2 nanoparticles immobilised onto the sidewalls of the MWCNTs. The UV-vis spectrum confirms that the nanocomposites can significantly absorb more light in the visible regions compared with the commercial TiO2 (P25). The catalytic activity of these nanocomposites was determined by photooxidation of MB aqueous solution in the presence of visible light. The MWCNTs/TiO2 (1:3) mass ratio showed maximum degradation efficiency. However, its activity was more favourable in alkaline and a neutral pH than an acidic medium.
    Matched MeSH terms: Photolysis
  20. Liew KB, Peh KK
    Pak J Pharm Sci, 2018 Nov;31(6):2515-2522.
    PMID: 30473526
    A stability-indicating HPLC-UV method for the simultaneous determination of sildenafil citrate and dapoxetine hydrochloride in solution and tablet was developed. The mobile phase was comprised of acetonitrile and 0.2M ammonium acetate buffer. The analyte was eluted at 3.392min and 7.255min for sildenafil citrate and dapoxetine HCl respectively using gradient system at a flow rate of 1.5mL/min. The theoretical plates count was>2000, tailing factor
    Matched MeSH terms: Photolysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links