Displaying all 16 publications

Abstract:
Sort:
  1. Masre SF, Jufri NF, Ibrahim FW, Abdul Raub SH
    Rev Med Virol, 2021 09;31(5):1-9.
    PMID: 33368788 DOI: 10.1002/rmv.2207
    Understanding the molecules that are essential for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) entry can provide insights into viral infection and dissemination. Recently, it has been identified from several studies that angiotensin-converting enzyme 2 receptor and transmembrane serine protease 2 are the main entry molecules for the SARS-CoV-2, which produced the pandemic of Covid-19. However, additional evidence showed several other viral receptors and cellular proteases that are also important in facilitating viral entry and transmission in the target cells. In this review, we summarized the types of SARS-CoV-2 entry molecules and discussed their crucial roles for virus binding, protein priming and fusion to the cellular membrane important for SARS-CoV-2 infection.
    Matched MeSH terms: Receptors, Virus/genetics; Receptors, Virus/metabolism*
  2. Tan CW, Poh CL, Sam IC, Chan YF
    J Virol, 2013 Jan;87(1):611-20.
    PMID: 23097443 DOI: 10.1128/JVI.02226-12
    Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor.
    Matched MeSH terms: Receptors, Virus/metabolism*
  3. Kumar S, Karuppanan K, Subramaniam G
    J Med Virol, 2022 Oct;94(10):4780-4791.
    PMID: 35680610 DOI: 10.1002/jmv.27927
    The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread throughout the world. We used computational tools to assess the spike infectivity, transmission, and pathogenicity of Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) in this study. BA.1 has 39 mutations, BA.1.1 has 40 mutations, BA.2 has 31 mutations, and BA.3 has 34 mutations, with 21 shared mutations between all. We observed 11 common mutations in Omicron's receptor-binding domain (RBD) and sub-variants. In pathogenicity analysis, the Y505H, N786K, T95I, N211I, N856K, and V213R mutations in omicron and sub-variants are predicted to be deleterious. Due to the major effect of the mutations characterizing in the RBD, we found that Omicron and sub-variants had a higher positive electrostatic surface potential. This could increase interaction between RBD and negative electrostatic surface potential human angiotensin-converting enzyme 2 (hACE2). Omicron and sub-variants had a higher affinity for hACE2 and the potential for increased transmission when compared to the wild-type (WT). Negative electrostatic potential of N-terminal domain (NTD) of the spike protein value indicates that the Omicron variant binds receptors less efficiently than the WT. Given that at least one receptor is highly expressed in lung and bronchial cells, the electrostatic potential of NTD negative value could be one of the factors contributing to why the Omicron variant is thought to be less harmful to the lower respiratory tract. Among Omicron sub-lineages, BA.2 and BA.3 have a higher transmission potential than BA.1 and BA.1.1. We predicted that mutated residues in BA.1.1 (K478), BA.2 (R400, R490, and R495), and BA.3 (R397 and H499) formation of new salt bridges and hydrogen bonds. Omicron and sub-variant mutations at Receptor-binding Motif (RBM) residues such as Q493R, N501Y, Q498, T478K, and Y505H all contribute significantly to binding affinity with human ACE2. Interactions with Omicron variant mutations at residues 493, 496, 498, and 501 seem to restore ACE2 binding effectiveness lost due to other mutations like K417N.
    Matched MeSH terms: Receptors, Virus/metabolism
  4. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al.
    Nat Med, 2009 Jul;15(7):798-801.
    PMID: 19543282 DOI: 10.1038/nm.1992
    Enterovirus 71 (EV71) belongs to human enterovirus species A of the genus Enterovirus within the family Picornaviridae. EV71, together with coxsackievirus A16 (CVA16), are most frequently associated with hand, foot and mouth disease (HFMD). Although HFMD is considered a mild exanthematous infection, infections involving EV71, but not CVA16, can progress to severe neurological disease, including fatal encephalitis, aseptic meningitis and acute flaccid paralysis. In recent years, epidemic and sporadic outbreaks of neurovirulent EV71 infections have been reported in Taiwan, Malaysia, Singapore, Japan and China. Here, we show that human scavenger receptor class B, member 2 (SCARB2, also known as lysosomal integral membrane protein II or CD36b like-2) is a receptor for EV71. EV71 binds soluble SCARB2 or cells expressing SCARB2, and the binding is inhibited by an antibody to SCARB2. Expression of human SCARB2 enables normally unsusceptible cell lines to support EV71 propagation and develop cytopathic effects. EV71 infection is hampered by the antibody to SCARB2 and soluble SCARB2. SCARB2 also supports the infection of the milder pathogen CVA16. The identification of SCARB2 as an EV71 and CVA16 receptor contributes to a better understanding of the pathogenicity of these viruses.
    Matched MeSH terms: Receptors, Virus/analysis; Receptors, Virus/physiology*
  5. Bina Rai S, Wan Mansor H, Vasantha T, Norizah I, Chua KB
    Med J Malaysia, 2007 Aug;62(3):223-6.
    PMID: 18246912 MyJurnal
    Confinement homes are private institutions that provide full-time care for newborn babies and their respective postpartum mothers up to one month after delivery. An outbreak of fever and diarrhoea amongst newborns occurred in one such confinement home in Penang between the months of September to October 2004. An outbreak investigation was carried out including all babies, their respective mothers and workers in the home to determine the source of the outbreak and to institute control measures. Based on a working case definition of febrile illness with or without diarrhoea, 11 out of the 13 babies in the confinement home met the case definition. One hundred percent had symptoms of fever. 36.4% had symptoms of diarrhea and other respiratory conditions respectively. The attack rate of among babies in the confinement home was 90%. Echovirus 11 was isolated from 3 out of the 11 febrile cases. Echovirus 11 was isolated from the cerebrospinal fluid and stool of another baby at a private hospital that was epidemiologically linked to the first case. In conclusion, the outbreak of febrile illness amongst newborn babies in the affected confinement home was due to echovirus 11. The source was probably health-care associated with efficient transmission within the confinement home. The faecal-oral route was the most likely mode of transmission.
    Matched MeSH terms: Receptors, Virus/immunology*
  6. Aliyu IA, Ling KH, Md Hashim N, Chee HY
    Rev Med Virol, 2019 05;29(3):e2038.
    PMID: 30746844 DOI: 10.1002/rmv.2038
    Annexin A2 is a membrane scaffolding and binding protein, which mediated various cellular events. Its functions are generally affected by cellular localization. In the cytoplasm, they interacted with different phospholipid membranes in Ca2+ -dependent manner and play vital roles including actin binding, remodeling and dynamics, cytoskeletal rearrangement, and lipid-raft microdomain formation. However, upon cell exposure to certain stimuli, annexin A2 translocates to the external leaflets of the plasma membrane where annexin A2 was recently reported to serve as a virus receptor, play an important role in the formation of virus replication complex, or implicated in virus assembly and budding. Here, we review some of annexin A2 roles in virus infections and the potentiality of targeting annexin A2 in the design of novel and promising antivirus agent that may have a broader consequence in virus therapy.
    Matched MeSH terms: Receptors, Virus/metabolism
  7. Ismail NZ, Adebayo IA, Mohamad Zain NN, Arsad H
    Nat Prod Res, 2021 May 05.
    PMID: 33949277 DOI: 10.1080/14786419.2021.1919104
    Clinacanthus nutans has been reported to have many medicinal properties and it is traditionally used in treating viral lesions. This study aims to determine the molecular docking of C. nutans compounds detected by Gas Chromatography-Mass Spectrometry (GC-MS) with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 main protease) protein and its host receptor angiotensin-converting enzyme 2 (ACE2) protein using the AutoDock 4.2 tool. The drug-likeness and molecular docking analyses showed that fourteen compounds of C. nutans satisfied the Lipinski's rule of five and they exhibited good inhibitory effects against the SARS-Cov-2 main protease and ACE2 proteins. In addition, the glyceryl 2-linolenate compound was found to have the most potent binding affinities with both proteins. The results provide useful insights into the molecular inhibitory interactions of C. nutans compounds detected by GC-MS analysis with the targeted SARS-CoV-2 main protease and ACE2 protein.
    Matched MeSH terms: Receptors, Virus
  8. Yogarajah T, Ong KC, Perera D, Wong KT
    Arch Virol, 2017 Mar;162(3):727-737.
    PMID: 27878462 DOI: 10.1007/s00705-016-3157-4
    Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are closely related enteroviruses that cause hand, foot and mouth disease (HFMD) in children. Serious neurological complications almost always occur in EV-A71 infection, but are rare in CV-A16 infection. Based on the hypothesis that this may be because EV-A71 infects neuronal cells more easily than CV-A16, we compared virus infection, replication and spread of EV-A71 and CV-A16 in SK-N-SH cells. We found that CV-A16 invariably showed significantly lower replication and caused less necrotic cell death in SK-N-SH cells, compared with EV-A71. This was not due to a lower proportion of CV-A16-infected cells, since both viruses showed similar proportions of infected cells at all time points analyzed. Furthermore, reduced replication of CV-A16 in SK-N-SH cells does not appear to be due to limited viral receptor availability, which might limit viral entry, because experiments with viral RNA-transfected cells showed the same results as for live virus infections. On the other hand, no differences were observed between EV-A71 and CV-A16 in RD cells and results were generally similar in RD cells for both viruses. Taken together, our findings suggest that the poor growth of CV-A16 and EV-A71in SK-N-SH cells, compared with RD cells, may be due to cell type-specific restrictions on viral replication and spread. Furthermore, the lower viral replication and necrotic cell death in CV-A16-infected SK-N-SH cells, compared with EV-A71-infected SK-N-SH cells, is consistent with the lower prevalence of neurotropism observed in CV-A16-associated HFMD outbreaks. Nonetheless, in vivo data and more extensive comparisons of different viral strains are essential to confirm our findings.
    Matched MeSH terms: Receptors, Virus
  9. Tan CW, Sam IC, Lee VS, Wong HV, Chan YF
    Virology, 2017 01 15;501:79-87.
    PMID: 27875780 DOI: 10.1016/j.virol.2016.11.009
    Enterovirus A71 (EV-A71) is a neurotropic enterovirus that uses heparan sulfate as an attachment receptor. The molecular determinants of EV-A71-heparan sulfate interaction are unknown. With In silico heparin docking and mutagenesis of all possible lysine residues in VP1, we identified that K162, K242 and K244 are responsible for heparin interaction and inhibition. EV-A71 mutants with K242A and K244A rapidly acquired compensatory mutations, T100K or E98A, and Q145R-T237N respectively, which restored the heparin-binding phenotype. Both VP1-98 and VP1-145 modulates heparin binding. Heparin-binding phenotype was completely abolished with VP1-E98-E145, but was restored by an E98K or E145Q substitution. During cell culture adaptation, EV-A71 rapidly acquired K98 or Q/G145 to restore the heparin-binding phenotype. Together with next-generation sequencing analysis, our results implied that EV-A71 has high genetic plasticity by modulating positively-charged residues at the five-fold axis during in vitro heparin adaptation. Our finding has impact on EV-A71 vaccine production, evolutionary studies and pathogenesis.
    Matched MeSH terms: Receptors, Virus/metabolism*
  10. Chua KH, Chai HC
    Genet. Mol. Res., 2012;11(1):636-43.
    PMID: 22535399 DOI: 10.4238/2012.March.16.1
    Hemagglutinin (HA) protein plays an important role in binding the influenza virus to infected cells and therefore mediates infection. Deposited HA sequences of 86 Asian strains of influenza A (H1N1) viruses during the first outbreak were obtained from the NCBI database and compared. Interaction of the HA protein of influenza A (H1N1) virus with the human sialic acid receptor was also studied using bioinformatics. Overall, not more than three single-point amino acid variants/changes were observed in the HA protein region of influenza A (H1N1) virus from Asian countries when a selected group sequence comparison was made. The bioinformatics study showed that the HA protein of influenza A (H1N1) binds to the sialic acid receptor in human airway receptors, possibly key to air-borne infection in humans.
    Matched MeSH terms: Receptors, Virus/metabolism*
  11. Maisner A, Neufeld J, Weingartl H
    Thromb. Haemost., 2009 Dec;102(6):1014-23.
    PMID: 19967130 DOI: 10.1160/TH09-05-0310
    Nipah virus (NiV) is a highly pathogenic paramyxovirus that was first isolated in 1999 during an outbreak in Malaysia. In contrast to other paramyxoviruses NiV infects many mammalian species. Because of its zoonotic potential, the high pathogenicity and the lack of therapeutic treatment, NiV was classified as a biosafety level 4 pathogen. In humans NiV causes a severe acute encephalitis whereas in some animal hosts respiratory symptoms are predominantly observed. Despite the differences in the clinical outcome, microvascular endothelial cell damage predominantly underlies the pathological changes in NiV infections in all susceptible host species. NiV generally induces a pronounced vasculitis which is primarily characterised by endothelial cell necrosis and inflammatory cell infiltration. For future developments of specific antiviral therapies or vaccines, a detailed understanding of the molecular basis of NiV pathogenesis is required. This article reviews the current knowledge about natural and experimental infections in different mammals, focusing on the main organ and cell tropism in vivo, and summarises some recent studies in cell culture on the role of ephrin-B2 and -B3 receptors in NiV infection of endothelial cells.
    Matched MeSH terms: Receptors, Virus/physiology
  12. Chia SL, Lei J, Ferguson DJP, Dyer A, Fisher KD, Seymour LW
    Virology, 2017 05;505:162-171.
    PMID: 28260622 DOI: 10.1016/j.virol.2017.02.011
    Enadenotucirev (EnAd) is a group B oncolytic adenovirus developed for systemic delivery and currently undergoing clinical evaluation for advanced cancer therapy. For differentiated carcinomas, systemic delivery would likely expose virus particles to the basolateral surface of cancer cells rather than the apical surface encountered during natural infection. Here, we compare the ability of EnAd and adenovirus type-5 (Ad5) to infect polarised colorectal carcinoma cells from the apical or basolateral surfaces. Whereas Ad5 infection was more efficient via the apical than basolateral surface, EnAd readily infected cells from either surface. Progeny particles from EnAd were released preferentially via the apical surface for all cell lines and routes of infection. These data further support the utility of group B adenoviruses for systemic delivery and suggest that progeny virus are more likely to be released into the tumour rather than back through the basolateral surface into the blood stream.
    Matched MeSH terms: Receptors, Virus/metabolism
  13. He Y, Ong KC, Gao Z, Zhao X, Anderson VM, McNutt MA, et al.
    Am J Pathol, 2014 Mar;184(3):714-20.
    PMID: 24378407 DOI: 10.1016/j.ajpath.2013.11.009
    Enterovirus 71 (EV71; family Picornaviridae, species human Enterovirus A) usually causes hand, foot, and mouth disease, which may rarely be complicated by fatal encephalomyelitis. We investigated extra-central nervous system (extra-CNS) tissues capable of supporting EV71 infection and replication, and have correlated tissue infection with expression of putative viral entry receptors, scavenger receptor B2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL-1). Formalin-fixed, paraffin-embedded CNS and extra-CNS tissues from seven autopsy cases were examined by IHC and in situ hybridization to evaluate viral antigens and RNA. Viral receptors were identified with IHC. In all seven cases, the CNS showed stereotypical distribution of inflammation and neuronal localization of viral antigens and RNA, confirming the clinical diagnosis of EV71 encephalomyelitis. In six cases in which tonsillar tissues were available, viral antigens and/or RNA were localized to squamous epithelium lining the tonsillar crypts. Tissues from the gastrointestinal tract, pancreas, mesenteric nodes, spleen, and skin were all negative for viral antigens/RNA. Our novel findings strongly suggest that tonsillar crypt squamous epithelium supports active viral replication and represents an important source of viral shedding that facilitates person-to-person transmission by both the fecal-oral or oral-oral routes. It may also be a portal for viral entry. A correlation between viral infection and SCARB2 expression appears to be more significant than for PSGL-1 expression.
    Matched MeSH terms: Receptors, Virus/metabolism
  14. Se Thoe SY, Wong KK, Pathmanathan R, Sam CK, Cheng HM, Prasad U
    Gynecol Oncol, 1993 Aug;50(2):168-72.
    PMID: 8397152
    Epstein-Barr virus (EBV) receptors (EBV/C3d receptors) were detected, using the monoclonal antibody HB5, on 23 ectocervical and 5 endocervical biopsies of the uterine cervix. Elevated IgA titers against the viral capsid antigen and early antigen of EBV were also found in the cervical secretions from cervical carcinoma patients (83%), compared with samples from patients with cervical intraepithelial neoplasia (75%), herpes simplex virus-infected patients (0%), and gynecologic patients with nonmalignant conditions (0%). EBV DNA was present in 63% of cervical carcinoma biopsies detected by in situ hybridization. These observations suggest a positive association between EBV and carcinoma of the cervix.
    Matched MeSH terms: Receptors, Virus/analysis*
  15. Rahman SK, Ansari MA, Gaur P, Ahmad I, Chakravarty C, Verma DK, et al.
    Viruses, 2021 04 21;13(5).
    PMID: 33919410 DOI: 10.3390/v13050726
    To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.
    Matched MeSH terms: Receptors, Virus/metabolism*
  16. Jha NK, Ojha S, Jha SK, Dureja H, Singh SK, Shukla SD, et al.
    J Mol Neurosci, 2021 Nov;71(11):2192-2209.
    PMID: 33464535 DOI: 10.1007/s12031-020-01767-6
    The coronavirus disease 2019 (COVID-19) pandemic is an issue of global significance that has taken the lives of many across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for its pathogenesis. The pulmonary manifestations of COVID-19 have been well described in the literature. Initially, it was thought to be limited to the respiratory system; however, we now recognize that COVID-19 also affects several other organs, including the nervous system. Two similar human coronaviruses (CoV) that cause severe acute respiratory syndrome (SARS-CoV-1) and Middle East respiratory syndrome (MERS-CoV) are also known to cause disease in the nervous system. The neurological manifestations of SARS-CoV-2 infection are growing rapidly, as evidenced by several reports. There are several mechanisms responsible for such manifestations in the nervous system. For instance, post-infectious immune-mediated processes, direct virus infection of the central nervous system (CNS), and virus-induced hyperinflammatory and hypercoagulable states are commonly involved. Guillain-Barré syndrome (GBS) and its variants, dysfunction of taste and smell, and muscle injury are numerous examples of COVID-19 PNS (peripheral nervous system) disease. Likewise, hemorrhagic and ischemic stroke, encephalitis, meningitis, encephalopathy acute disseminated encephalomyelitis, endothelialitis, and venous sinus thrombosis are some instances of COVID-19 CNS disease. Due to multifactorial and complicated pathogenic mechanisms, COVID-19 poses a large-scale threat to the whole nervous system. A complete understanding of SARS-CoV-2 neurological impairments is still lacking, but our knowledge base is rapidly expanding. Therefore, we anticipate that this comprehensive review will provide valuable insights and facilitate the work of neuroscientists in unfolding different neurological dimensions of COVID-19 and other CoV associated abnormalities.
    Matched MeSH terms: Receptors, Virus/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links