PURPOSE: The purpose of this study was to investigate the prescribed and measured gain of hearing aids fit according to the NAL-NL1 and the DSL v5 procedure for children with moderately severe to profound hearing loss; and to examine the impact of choice of prescription on predicted speech intelligibility and loudness.
RESEARCH DESIGN: Participants were fit with Phonak Naida V SP hearing aids according to the NAL-NL1 and DSL v5 procedures. The Speech Intelligibility Index (SII) and estimated loudness were calculated using published models.
STUDY SAMPLE: The sample consisted of 16 children (30 ears) aged between 7 and 17 yr old.
DATA COLLECTION AND ANALYSIS: The measured hearing aid gains were compared with the prescribed gains at 50 (low), 65 (medium), and 80 dB SPL (high) input levels. The goodness of fit-to-targets was quantified by calculating the average root-mean-square (RMS) error of the measured gain compared with prescriptive gain targets for 0.5, 1, 2, and 4 kHz. The significance of difference between prescriptions for hearing aid gains, SII, and loudness was examined by performing analyses of variance. Correlation analyses were used to examine the relationship between measures.
RESULTS: The DSL v5 prescribed significantly higher overall gain than the NAL-NL1 procedure for the same audiograms. For low and medium input levels, the hearing aids of all children fit with NAL-NL1 were within 5 dB RMS of prescribed targets, but 33% (10 ears) deviated from the DSL v5 targets by more than 5 dB RMS on average. For high input level, the hearing aid fittings of 60% and 43% of ears deviated by more than 5 dB RMS from targets of NAL-NL1 and DSL v5, respectively. Greater deviations from targets were associated with more severe hearing loss. On average, the SII was higher for DSL v5 than for NAL-NL1 at low input level. No significant difference in SII was found between prescriptions at medium or high input level, despite greater loudness for DSL v5 than for NAL-NL1.
CONCLUSIONS: Although targets between 0.25 and 2 kHz were well matched for both prescriptions in commercial hearing aids, gain targets at 4 kHz were matched for NAL-NL1 only. Although the two prescriptions differ markedly in estimated loudness, they resulted in comparable predicted speech intelligibility for medium and high input levels.
OBJECTIVE: To examine the relative contributions of auditory functioning and cognition status to speech recognition in quiet and in noise.
METHODS: We measured speech recognition in quiet and in composite noise using the Malay Hearing in noise test on 72 native Malay speakers (60-82 years) older adults with normal to mild hearing loss. Auditory function included pure tone audiogram, gaps-in-noise, and dichotic digit tests. Cognitive function was assessed using the Malay Montreal cognitive assessment.
RESULTS: Linear regression analyses using backward elimination technique revealed that had the better ear four frequency average (0.5-4kHz) (4FA), high frequency average and Malay Montreal cognitive assessment attributed to speech perception in quiet (total r2=0.499). On the other hand, high frequency average, Malay Montreal cognitive assessment and dichotic digit tests contributed significantly to speech recognition in noise (total r2=0.307). Whereas the better ear high frequency average primarily measured the speech recognition in quiet, the speech recognition in noise was mainly measured by cognitive function.
CONCLUSIONS: These findings highlight the fact that besides hearing sensitivity, cognition plays an important role in speech recognition ability among older adults, especially in noisy environments. Therefore, in addition to hearing aids, rehabilitation, which trains cognition, may have a role in improving speech recognition in noise ability of older adults.
OBJECTIVE: The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations.
METHODS: A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally.
RESULTS: While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p<0.05). As revealed by large effect sizes (d>0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes.
CONCLUSION: The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults.
METHODS: Twenty-nine healthy Malaysian subjects (14 males and 15 females) aged 19 to 30 years participated in this study. After measuring the head circumference, speech-ABR was recorded by using synthesized syllable /da/ from the right ear of each participant. Speech-ABR peaks amplitudes, peaks latencies, and composite onset measures were computed and analyzed.
RESULTS: Significant gender disparities were noted in the transient component but not in the sustained component of speech-ABR. Statistically higher V/A amplitudes and less steeper V/A slopes were found in females. These gender differences were partially affected after controlling for the head size.
CONCLUSIONS: Head size is not the main contributing factor for gender disparities in speech-ABR outcomes. Gender-specific normative data can be useful when recording speech-ABR for clinical purposes.
METHODS: Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level.
RESULTS: As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR.
CONCLUSION: The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies.
METHODS: This was a cross sectional study from January 2019 to December 2020 in which thirty-one children with hearing loss and multiple disabilities were evaluated. Their improvement in auditory and speech performances were assessed using Categories of Auditory Performance version II (CAP-II) and the Speech Intelligibility Rating (SIR) scales. The assessment was done at 6-month intervals, with the baseline evaluation done at least six months after activation of the implant. Parents were asked to fill the Parents Evaluation of Aural/Oral Performance of Children (PEACH) diary and Perceived Benefit Questionnaire (PBQ) to evaluate the child's quality of life.
RESULTS: All 31 children have Global Developmental Delay (GDD), with 11 having an additional disability. Both mean CAP-II and SIR scores showed significant improvement with increased hearing age (p speech development.
CONCLUSIONS: Cochlear implantation had shown benefits in children with multiple disabilities. Outcome measures should not only focus on auditory and speech performances but the improvement in quality of life. Hence, individualized each case with realistic expectation from families must be emphasized in this group of children.
LEVEL OF EVIDENCE: Level 3.
MATERIALS AND METHODS: The EEG signal was used as a brain response signal, which was evoked by two auditory stimuli (Tones and Consonant Vowels stimulus). The study was carried out on Malaysians (Malay and Chinese) with normal hearing and with hearing loss. A ranking process for the subjects' EEG data and the nonlinear features was used to obtain the maximum classification accuracy.
RESULTS: The study formulated the classification of Normal Hearing Ethnicity Index and Sensorineural Hearing Loss Ethnicity Index. These indices classified the human ethnicity according to brain auditory responses by using numerical values of response signal features. Three classification algorithms were used to verify the human ethnicity. Support Vector Machine (SVM) classified the human ethnicity with an accuracy of 90% in the cases of normal hearing and sensorineural hearing loss (SNHL); the SVM classified with an accuracy of 84%.
CONCLUSION: The classification indices categorized or separated the human ethnicity in both hearing cases of normal hearing and SNHL with high accuracy. The SVM classifier provided a good accuracy in the classification of the auditory brain responses. The proposed indices might constitute valuable tools for the classification of the brain responses according to the human ethnicity.