A rapid and green analytical method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (C⁴D) for the determination of eight environmental pollutants, the biogenic amines (putrescine, cadaverine, spermidine, spermine, tyramine, 2-phenylamine, histamine and tryptamine), is described. The separation was achieved under normal polarity mode at 24 °C and 25 kV with a hydrodynamic injection (50 mbar for 5 s) and using a bare fused-silica capillary (95 cm length × 50 µm i.d.) (detection length of 10.5 cm from the outlet end of the capillary). The optimized background electrolyte consisted of 400 mM malic acid. C⁴D parameters were set at a fixed amplitude (50 V) and frequency (600 kHz). Under the optimum conditions, the method exhibited good linearity over the range of 1.0⁻100 µg mL−1 (R² ≥ 0.981). The limits of detection based on signal to noise (S/N) ratios of 3 and 10 were ≤0.029 µg mL−1. The method was used for the determination of seawater samples that were spiked with biogenic amines. Good recoveries (77⁻93%) were found.
In the present work, the biogenic amines tryptamine (TRP), putrescine (PUT), histamine (HIS), tyramine (TYR) and spermidine (SPD) were determined in 32 various types of tofu that were obtained from different states in Malaysia. Three main types of tofu; soft tofu, firm tofu and processed tofu, were analysed in the present work. The biogenic amine contents in the respective types of tofu were analysed by a reversed-phase HPLC with a DAD detector after the aqueous extraction and derivatisation with dansyl chloride. The LOD values ranged from 0.019 mg/L for PUT to 0.028 mg/L for TYR. While, the LOQ values ranged from 0.063 mg/L (PUT) to 0.096 mg/L (TYR). The recovery values for all the five amines ranged from 80.3% to 120.5% with RSD ≤ 3.1%. The total levels of biogenic amines found varied, ranging from 1.5 mg/kg to 687.9 mg/kg, with mean values (p < 0.05) in descending order of 44.6, 12.6, 9.1, 4.8 and 4.7 mg/kg for PUT, TYR, SPD, HIS and TRP, respectively. PUT and TRP were the most prevailing biogenic amines and they were found respectively in 90.62% of the tofu analysed. Significant positive correlations (r = 0.266 to 0.874, p < 0.05) were found between some individual biogenic amines and protein content in all the three types of tofu. However, negative correlations (r = -0.246 to -0.832, p < 0.05) were observed between biogenic amines and moisture content, and between biogenic amines and water activity in all the three types of tofu. Significant and strong correlations (r = 0.525 to 0.999, p < 0.05) were found between most of the individual biogenic amines and the total biogenic amines. Those tofu exceeding the legal limits may affect the health of sensitive individuals.
Over accumulation of polyamines is one of the causes of cancer because
polyamines could promote the cancer cells growth. Due to the lack of specificity and
increased reports of side effects in the current cancer treatment, one of the strategies
to overcome the challenges is by utilizing polyamines as vectors of known cytotoxic
compounds to target the cancer cells. Therefore, this study was aimed to investigate
the cytotoxicity effect of Spermidine Sulphur Analogues Type 1 and Type 2 (SSA-1 and
SSA-2) against human lung adenocarcinoma cells (A549), human colorectal
adenocarcinoma cells (HCT-8) and human breast adenocarcinoma cell (MCF-7). (Copied from article).
Biological amines are nitrogenous compounds that occur naturally in wide variety of food. Histamine, putrescine, cadavarine, tyramine, spermine, spermidine, tryptamine and β-phenylethylamine are the biogenic amines that are normally present in foods. Although the biogenic amines play some important physiological functions but high level of amines can cause toxicological effects. High amount of amines can be produced by bacteria during amino acids decarboxylation and have been identified as one of the important agent causing seafood intoxication. Temperature is the major factor for controlling the biogenic amines formation in food. The effects of other alternatives are also discussed including salting, packaging, irradiation, high pressure processing and the use of starter culture. A variety of techniques can be combined together to control the microbial growth and enzyme activity during processing and storage for better shelf life extension and food safety.
A novel bacterium, strain MUSC 273(T), was isolated from mangrove sediments of the Tanjung Lumpur river in the state of Pahang in peninsular Malaysia. The bacterium was yellow-pigmented, Gram-negative, rod-shaped and non-spore-forming. The taxonomy of strain MUSC 273(T) was studied by a polyphasic approach and the organism showed a range of phenotypic and chemotaxonomic properties consistent with those of the genus Novosphingobium. The 16S rRNA gene sequence of strain MUSC 273(T) showed the highest sequence similarity to those of Novosphingobium indicum H25(T) (96.8 %), N. naphthalenivorans TUT562(T) (96.4 %) and N. soli CC-TPE-1(T) (95.9 %) and lower sequence similarity to members of all other species of the genus Novosphingobium. Furthermore, in phylogenetic analyses based on the 16S rRNA gene sequence, strain MUSC 273(T) formed a distinct cluster with members of the genus Novosphingobium. DNA-DNA relatedness of strain MUSC 273(T) to the type strains of the most closely related species, N. indicum MCCC 1A01080(T) and N. naphthalenivorans DSM 18518(T), was 29.2 % (reciprocal 31.0 %) and 17 % (reciprocal 18 %), respectively. The major respiratory quinone was ubiquinone Q-10, the major polyamine was spermidine and the DNA G+C content was 63.3±0.1 mol%. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine and sphingoglycolipid. The major fatty acids were C18 : 1ω7c, C17 : 1ω6c, C16 : 0, C15 : 0 2-OH and C16 : 1ω7c. Comparison of BOX-PCR fingerprints indicated that strain MUSC 273(T) represented a unique DNA profile. The combined genotypic and phenotypic data showed that strain MUSC 273(T) represents a novel species of the genus Novosphingobium, for which the name Novosphingobium malaysiense sp. nov. is proposed. The type strain is MUSC 273(T) ( = DSM 27798(T) = MCCC 1A00645(T) = NBRC 109947(T)).