Displaying publications 1 - 20 of 260 in total

Abstract:
Sort:
  1. VELLA F
    Med J Malaya, 1959 Sep;14:31-5.
    PMID: 13855207
    Matched MeSH terms: Starch*
  2. Lie-Injo Luan Eng, Weitkamp LR, Kosasih EN, Bolton JM, Moore CL
    Hum. Hered., 1971;21(4):376-83.
    PMID: 5003129
    Matched MeSH terms: Starch
  3. Fessas P, Eng LI, Na-Nakorn S, Todd D, Clegg JB, Weatherall DJ
    Lancet, 1972 Jun 17;1(7764):1308-10.
    PMID: 4113401
    Matched MeSH terms: Electrophoresis, Starch Gel
  4. Eng LL, Lopez CG, Eapen JS, Eravelly J, Wiltshire BG, Lehmann H
    J Med Genet, 1972 Sep;9(3):340-3.
    PMID: 5079107 DOI: 10.1136/jmg.9.3.340
    Matched MeSH terms: Electrophoresis, Starch Gel
  5. Eng LI, Loo M, Fah FK
    Br J Haematol, 1972 Oct;23(4):419-25.
    PMID: 5084807
    Matched MeSH terms: Electrophoresis, Starch Gel
  6. Lie-Injo LE
    Med J Malaya, 1972 Dec;27(2):120-4.
    PMID: 4268037
    Matched MeSH terms: Electrophoresis, Starch Gel
  7. Lie-Injo LE, Fix A, Bolton JM, Gilman RH
    Acta Haematol., 1972;47(4):210-6.
    PMID: 4625303
    Matched MeSH terms: Starch
  8. Welch QB, Lie-Injo Luan Eng, Bolton JM
    Hum. Hered., 1972;22(1):28-37.
    PMID: 4624781
    Matched MeSH terms: Electrophoresis, Starch Gel
  9. Eng LI, Baer A, Lewis AN, Welch QB
    Am J Hum Genet, 1973 Jul;25(4):382-7.
    PMID: 4716657
    Matched MeSH terms: Electrophoresis, Starch Gel
  10. Luan Eng LI, Wiltshire BG, Lehmann H
    Biochim. Biophys. Acta, 1973 Oct 18;322(2):224-30.
    PMID: 4765089
    Matched MeSH terms: Electrophoresis, Starch Gel
  11. Lie-Injo LE
    Acta Haematol., 1973;49(1):25-35.
    PMID: 4632449 DOI: 10.1159/000208382
    Newborns were examined for the presence of slow-moving haemoglobin components, tentatively designated X components and previously found in a group of Hb H disease in which invariably one of the parents of each patient had the same slow-moving Hb X components also. Structural studies showed that the abnormal haemoglobin in Chinese was identical with Hb Constant Spring, an c-chain variant. Newborns with Hb Bart’s and slow-moving X components invariably had one parent with the X components also. When the child grew older Hb Bart’s disappeared while the Hb X components remained in the blood. The homozygous state for the X components was found in a Malay boy through his newborn brother who had the X components in addition to Hb Bart’s and had both parents with the X components. One other Malay baby had the X components and Hb A2 Indonesia inherited from the parents. The present study of newborns also showed that Hb Bart’s can accompany different abnormalities of haemoglobin production, involving alpha-chains, beta-chains as well as gamm-chains. Its presence in cord blood is, therefore, not specific for alpha-thalassaemia
    Key Words: Haemoglobinopathies; Hb Bart’s; Slow-moving Hb X; Thalassaemia
    Matched MeSH terms: Electrophoresis, Starch Gel
  12. Lie-Injo LE, Lopez CG, Ganesan J
    Hum. Hered., 1973;23(5):487-91.
    PMID: 4799059
    Matched MeSH terms: Electrophoresis, Starch Gel
  13. Nute PE, Pataryas HA
    Am. J. Phys. Anthropol., 1974 Jan;40(1):17-25.
    PMID: 4206325
    Matched MeSH terms: Electrophoresis, Starch Gel
  14. Fix AG, Lie-injo LE
    Am. J. Phys. Anthropol., 1975 Jul;43(1):47-55.
    PMID: 1155591
    Blood samples, demographic and cultural data were collected from seven settlements of Semai Senoi, a swidden farming ethnic group of Malaysia. Three genetic loci (ABO blood group, hereditary ovalcytosis, and hemoglobin) were analyzed in a total sample of 546 individuals. These data indicate a considerable degree of genetic microdifferentiation in this area of the Semai distribution. Parent-offspring birthplace data (analyzed by means of a migration matrix) and settlement histories show that settlements are not strongly isolated. Genetic differences in the study area demonstrate a reasonable correspondence with migration and the history of the settlements. Genetic convergence also occurs through the addition of migrant groups to established populations leading to new patterns of marriage between donor and recipient groups. The genetic structure of the total Semai population through time thus comprises a mosaic of shifiting allele frequencies in a series of semi-isolated local populations.
    Matched MeSH terms: Electrophoresis, Starch Gel
  15. Yong HS, Yao L, Dhaliwal SS, Cheong WH, Chiang GL
    Comp. Biochem. Physiol., B, 1983;75(1):43-5.
    PMID: 6406135
    1. A total of 8 samples from three natural populations and a laboratory strain of Aedes albopictus were analysed for glycerol-3-phosphate dehydrogenase phenotypes by means of horizontal starch-gel electrophoresis. 2. The electrophoretic phenotypes were governed by three codominant Gpd alleles. 3. There was low variability, with the heterozygosity in the variable samples ranging from 0.02 to 0.12. 4. The commonest allele in all the population samples was GpdB which encoded an electrophoretic band with intermediate mobility. 5. There was no temporal or spatial variation.
    Matched MeSH terms: Electrophoresis, Starch Gel
  16. Yong HS, Mak JW
    Experientia, 1984 Aug 15;40(8):833-4.
    PMID: 6468590
    Glucose phosphate isomerase of subperiodic Brugia malayi was studied by horizontal starch-gel electrophoresis. Two heterophenotypes, each represented by 3 bands of enzyme activity, were found among 38 parasites studied. This finding is attributed to the occurrence of 2 Gpi gene loci.
    Matched MeSH terms: Electrophoresis, Starch Gel
  17. Zarinah KH, Abdullah F, Tan SG
    Ann Hum Biol, 1984 11 1;11(6):533-6.
    PMID: 6084457
    Three genetic markers, red-cell UMPK, PGP and serum AMY2 were investigated in Malaysians of Malay, Chinese and Indian ancestries using starch-gel and agarose-gel electrophoresis. UMPK was found to be polymorphic in all three races. Variants were observed for PGP in Malays; in Indians it is a polymorphic marker whereas it is monomorphic in Chinese. AMY2 was polymorphic only in Indians. The UMPK1 frequencies in Malays, Chinese and Indians, respectively, are 0.851, 0.880 and 0.942. The PGP1 frequencies are 0.991, 1.000, 0.962, and the AMY1(2) frequencies are 1.000, 1.000 and 0.983.
    Matched MeSH terms: Electrophoresis, Starch Gel
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links