Displaying publications 1 - 20 of 161 in total

Abstract:
Sort:
  1. Fang K, Azizan SA, Huang H
    Sci Rep, 2024 Apr 07;14(1):8139.
    PMID: 38584168 DOI: 10.1038/s41598-024-58712-5
    Pedestrian safety, particularly for children, relies on well-designed pathways. Child-friendly pathways play a crucial role in safeguarding young pedestrians. Shared spaces accommodating both vehicles and walkers can bring benefits to pedestrians. However, active children playing near these pathways are prone to accidents. This research aims to develop an efficient method for planning child-friendly pedestrian pathways, taking into account community development and the specific needs of children. A mixed-methods approach was employed, utilizing the Datang community in Guangzhou, China, as a case study. This approach combined drawing techniques with GIS data analysis. Drawing methods were utilized to identify points of interest for children aged 2-6. The qualitative and quantitative fuzzy analytic hierarchy process assessed factors influencing pathway planning, assigning appropriate weights. The weighted superposition analysis method constructed a comprehensive cost grid, considering various community elements. To streamline the planning process, a GIS tool was developed based on the identified factors, resulting in a practical, child-friendly pedestrian pathway network. Results indicate that this method efficiently creates child-friendly pathways, ensuring optimal connectivity within the planned road network.
    Matched MeSH terms: Walking
  2. Guo L, Li S, Xie S, Bian L, Shaharudin S
    Sci Rep, 2024 Feb 09;14(1):3310.
    PMID: 38331984 DOI: 10.1038/s41598-024-53853-z
    The digital healthcare (DH) system has recently emerged as an advanced rehabilitation approach that promotes rehabilitation training based on virtual reality (VR) and augmented reality (AR). The purpose of this meta-analysis study is to review and assess the impact of DH systems on pain and physical function among patients diagnosed with knee joint pain. Between January 2003 and September 2023, studies that met the listed inclusion criteria were gathered from Scopus, PubMed, Web of Science, and EBSCO databases. The analysis of standardized mean difference (SMD) was carried out with 95% confidence interval (95% CI) (PROSPERO registration number: CRD42023462538). Eight research papers were selected, which collectively involved 194 males and 279 females. The meta-analysis outcomes revealed that DH intervention significantly improved balance (SMD, 0.41 [0.12, 0.69], p 
    Matched MeSH terms: Walking
  3. Perera CK, Gopalai AA, Gouwanda D, Ahmad SA, Salim MSB
    Sci Rep, 2023 Oct 03;13(1):16640.
    PMID: 37789077 DOI: 10.1038/s41598-023-43148-0
    Forward continuation, balance, and sit-to-stand-and-walk (STSW) are three common movement strategies during sit-to-walk (STW) executions. Literature identifies these strategies through biomechanical parameters using gold standard laboratory equipment, which is expensive, bulky, and requires significant post-processing. STW strategy becomes apparent at gait-initiation (GI) and the hip/knee are primary contributors in STW, therefore, this study proposes to use the hip/knee joint angles at GI as an alternate method of strategy classification. To achieve this, K-means clustering was implemented using three clusters corresponding to the three STW strategies; and two feature sets corresponding to the hip/knee angles (derived from motion capture data); from an open access online database (age: 21-80 years; n = 10). The results identified forward continuation with the lowest hip/knee extension, followed by balance and then STSW, at GI. Using this classification, strategy biomechanics were investigated by deriving the established biomechanical quantities from literature. The biomechanical parameters that significantly varied between strategies (P 
    Matched MeSH terms: Walking*
  4. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Almijalli M, Ahamed NU
    Sci Rep, 2023 Sep 27;13(1):16177.
    PMID: 37758958 DOI: 10.1038/s41598-023-43428-9
    Gait data collection from overweight individuals walking on irregular surfaces is a challenging task that can be addressed using inertial measurement unit (IMU) sensors. However, it is unclear how many IMUs are needed, particularly when body attachment locations are not standardized. In this study, we analysed data collected from six body locations, including the torso, upper and lower limbs, to determine which locations exhibit significant variation across different real-world irregular surfaces. We then used deep learning method to verify whether the IMU data recorded from the identified body locations could classify walk patterns across the surfaces. Our results revealed two combinations of body locations, including the thigh and shank (i.e., the left and right shank, and the right thigh and right shank), from which IMU data should be collected to accurately classify walking patterns over real-world irregular surfaces (with classification accuracies of 97.24 and 95.87%, respectively). Our findings suggest that the identified numbers and locations of IMUs could potentially reduce the amount of data recorded and processed to develop a fall prevention system for overweight individuals.
    Matched MeSH terms: Walking*
  5. Chang WH, Kim TW, Kim HS, Hanapiah FA, Kim DH, Kim DY
    BMJ Open, 2023 Aug 11;13(8):e065298.
    PMID: 37567748 DOI: 10.1136/bmjopen-2022-065298
    INTRODUCTION: The purpose of this study is to determine the effect of overground gait training using an exoskeletal wearable robot (exoskeleton) on the recovery of ambulatory function in patients with subacute stroke. We also investigate the assistive effects of an exoskeleton on ambulatory function in patients with subacute stroke.

    METHODS AND ANALYSIS: This study is an international, multicentre, randomised controlled study at five institutions with a total of 150 patients with subacute stroke. Participants will be randomised into two groups (75 patients in the robot-assisted gait training (RAGT) group and 75 patients in the control group). The gait training will be performed with a total of 20 sessions (60 min/session); 5 sessions a week for 4 weeks. The RAGT group will receive 30 min of gait training using an exoskeleton (ANGEL LEGS M20, Angel Robotics) and 30 min of conventional gait training, while the control group will receive 60 min conventional gait training. In all the patients, the functional assessments such as ambulation, motor and balance will be evaluated before and after the intervention. Follow-up monitoring will be performed to verify whether the patient can walk without physical assistance for 3 months. The primary outcome is the improvement of the Functional Ambulatory Category after the gait training. The functional assessments will also be evaluated immediately after the last training session in the RAGT group to assess the assistive effects of an exoskeletal wearable robot. This trial will provide evidence on the effects of an exoskeleton to improve and assist ambulatory function in patients with subacute stroke.

    ETHICS AND DISSEMINATION: This protocol has been approved by the Institutional Review Board of each hospital and conforms to the Declaration of Helsinki. The results will be disseminated through publication.

    TRIAL REGISTRATION NUMBER: Protocol was registered at ClinicalTrials.gov (NCT05157347) on 15 December 2021 and CRIS (KCT0006815) on 19 November 2021.

    Matched MeSH terms: Walking
  6. Maresova P, Krejcar O, Maskuriy R, Bakar NAA, Selamat A, Truhlarova Z, et al.
    BMC Geriatr, 2023 Jul 21;23(1):447.
    PMID: 37474928 DOI: 10.1186/s12877-023-04106-7
    BACKGROUND: Attention is focused on the health and physical fitness of older adults due to their increasing age. Maintaining physical abilities, including safe walking and movement, significantly contributes to the perception of health in old age. One of the early signs of declining fitness in older adults is limited mobility. Approximately one third of 70-year-olds and most 80-year-olds report restrictions on mobility in their apartments and immediate surroundings. Restriction or loss of mobility is a complex multifactorial process, which makes older adults prone to falls, injuries, and hospitalizations and worsens their quality of life while increasing overall mortality.

    OBJECTIVE: The objective of the study is to identify the factors that have had a significant impact on mobility in recent years and currently, and to identify gaps in our understanding of these factors. The study aims to highlight areas where further research is needed and where new and effective solutions are required.

    METHODS: The PRISMA methodology was used to conduct a scoping review in the Scopus and Web of Science databases. Papers published from 2007 to 2021 were searched in November 2021. Of these, 52 papers were selected from the initial 788 outputs for the final analysis.

    RESULTS: The final selected papers were analyzed, and the key determinants were found to be environmental, physical, cognitive, and psychosocial, which confirms the findings of previous studies. One new determinant is technological. New and effective solutions lie in understanding the interactions between different determinants of mobility, addressing environmental factors, and exploring opportunities in the context of emerging technologies, such as the integration of smart home technologies, design of accessible and age-friendly public spaces, development of policies and regulations, and exploration of innovative financing models to support the integration of assistive technologies into the lives of seniors.

    CONCLUSION: For an effective and comprehensive solution to support senior mobility, the determinants cannot be solved separately. Physical, cognitive, psychosocial, and technological determinants can often be perceived as the cause/motivation for mobility. Further research on these determinants can help to arrive at solutions for environmental determinants, which, in turn, will help improve mobility. Future studies should investigate financial aspects, especially since many technological solutions are expensive and not commonly available, which limits their use.

    Matched MeSH terms: Walking*
  7. Bernhardt J, Churilov L, Dewey H, Donnan G, Ellery F, English C, et al.
    Int J Stroke, 2023 Jul;18(6):745-750.
    PMID: 36398582 DOI: 10.1177/17474930221142207
    RATIONALE: The evidence base for acute post-stroke rehabilitation is inadequate and global guideline recommendations vary.

    AIM: To define optimal early mobility intervention regimens for ischemic stroke patients of mild and moderate severity.

    HYPOTHESES: Compared with a prespecified reference arm, the optimal dose regimen(s) will result in more participants experiencing little or no disability (mRS 0-2) at 3 months post-stroke (primary), fewer deaths at 3 months, fewer and less severe complications during the intervention period, faster recovery of unassisted walking, and better quality of life at 3 months (secondary). We also hypothesize that these regimens will be more cost-effective.

    SAMPLE SIZE ESTIMATES: For the primary outcome, recruitment of 1300 mild and 1400 moderate participants will yield 80% power to detect a 10% risk difference.

    METHODS AND DESIGN: Multi-arm multi-stage covariate-adjusted response-adaptive randomized trial of mobility training commenced within 48 h of stroke in mild (NIHSS  2) and hemorrhagic stroke. With four arms per stratum (reference arm retained throughout), only the single treatment arm demonstrating the highest proportion of favorable outcomes at the first stage will proceed to the second stage in each stratum, resulting in a final comparison with the reference arm. Three prognostic covariates of age, geographic region and reperfusion interventions, as well as previously observed mRS 0-2 responses inform the adaptive randomization procedure. Participants randomized receive prespecified mobility training regimens (functional task-specific), provided by physiotherapists/nurses until discharge or 14 days. Interventions replace usual mobility training. Fifty hospitals in seven countries (Australia, Malaysia, United Kingdom, Ireland, India, Brazil, Singapore) are expected to participate.

    SUMMARY: Our novel adaptive trial design will evaluate a wider variety of mobility regimes than a traditional two-arm design. The data-driven adaptions during the trial will enable a more efficient evaluation to determine the optimal early mobility intervention for patients with mild and moderate ischemic stroke.

    Matched MeSH terms: Walking
  8. Marconi G, Gopalai AA, Chauhan S
    Med Biol Eng Comput, 2023 May;61(5):1167-1182.
    PMID: 36689083 DOI: 10.1007/s11517-023-02778-2
    This simulation study aimed to explore the effects of mass and mass distribution of powered ankle-foot orthoses, on net joint moments and individual muscle forces throughout the lower limb. Using OpenSim inverse kinematics, dynamics, and static optimization tools, the gait cycles of ten subjects were analyzed. The biomechanical models of these subjects were appended with ideal powered ankle-foot orthoses of different masses and actuator positions, as to determine the effect that these design factors had on the subject's kinetics during normal walking. It was found that when the mass of the device was distributed more distally and posteriorly on the leg, both the net joint moments and overall lower limb muscle forces were more negatively impacted. However, individual muscle forces were found to have varying results which were attributed to the flow-on effect of the orthosis, the antagonistic pairing of muscles, and how the activity of individual muscles affect each other. It was found that mass and mass distribution of powered ankle-foot orthoses could be optimized as to more accurately mimic natural kinetics, reducing net joint moments and overall muscle forces of the lower limb, and must consider individual muscles as to reduce potentially detrimental muscle fatigue or muscular disuse. OpenSim modelling method to explore the effect of mass and mass distribution on muscle forces and joint moments, showing potential mass positioning and the effects of these positions, mass, and actuation on the muscle force integral.
    Matched MeSH terms: Walking/physiology
  9. Fan PY, Chun KP, Tan ML, Mah DN, Mijic A, Strickert G, et al.
    PLoS One, 2023;18(9):e0289780.
    PMID: 37682889 DOI: 10.1371/journal.pone.0289780
    The importance of easy wayfinding in complex urban settings has been recognized in spatial planning. Empirical measurement and explicit representation of wayfinding, however, have been limited in deciding spatial configurations. Our study proposed and tested an approach to improving wayfinding by incorporating spatial analysis of urban forms in the Guangdong-Hong Kong-Macau Great Bay Area in China. Wayfinding was measured by an indicator of intelligibility using spatial design network analysis. Urban spatial configurations were quantified using landscape metrics to describe the spatial layouts of local climate zones (LCZs) as standardized urban forms. The statistical analysis demonstrated the significant associations between urban spatial configurations and wayfinding. These findings suggested, to improve wayfinding, 1) dispersing LCZ 1 (compact high-rise) and LCZ 2 (compact mid-rise) and 2) agglomerating LCZ 3 (compact low-rise), LCZ 5 (open mid-rise), LCZ 6 (open low-rise), and LCZ 9 (sparsely built). To our knowledge, this study is the first to incorporate the LCZ classification system into the wayfinding field, clearly providing empirically-supported solutions for dispersing and agglomerating spatial configurations. Our findings also provide insights for human-centered spatial planning by spatial co-development at local, urban, and regional levels.
    Matched MeSH terms: Walking
  10. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Almijalli M, Ahamed NU
    Phys Eng Sci Med, 2022 Dec;45(4):1289-1300.
    PMID: 36352317 DOI: 10.1007/s13246-022-01195-3
    Unusual walk patterns may increase individuals' risks of falling. Anthropometric features of the human body, such as the body mass index (BMI), influences the walk patterns of individuals. In addition to the BMI, uneven walking surfaces may cause variations in the usual walk patterns of an individual that will potentially increase the individual's risk of falling. The objective of this study was to statistically evaluate the variations in the walk patterns of individuals belonging to two BMI groups across a wide range of walking surfaces and to investigate whether a deep learning method could classify the BMI-specific walk patterns with similar variations. Data collected by wearable inertial measurement unit (IMU) sensors attached to individuals with two different BMI were collected while walking on real-world surfaces. In addition to traditional statistical analysis tools, an advanced deep learning-based neural network was used to evaluate and classify the BMI-specific walk patterns. The walk patterns of overweight/obese individuals showed a greater correlation with the corresponding walking surfaces than the normal-weight population. The results were supported by the deep learning method, which was able to classify the walk patterns of overweight/obese (94.8 ± 4.5%) individuals more accurately than those of normal-weight (59.4 ± 23.7%) individuals. The results suggest that application of the deep learning method is more suitable for recognizing the walk patterns of overweight/obese population than those of normal-weight individuals. The findings from the study will potentially inform healthcare applications, including artificial intelligence-based fall assessment systems for minimizing the risk of fall-related incidents among overweight and obese individuals.
    Matched MeSH terms: Walking
  11. Czepczor-Bernat K, Modrzejewska J, Modrzejewska A, Swami V
    Int J Environ Res Public Health, 2022 Nov 05;19(21).
    PMID: 36361429 DOI: 10.3390/ijerph192114548
    Studies have shown that nature exposure is associated with a more positive body image, but field studies remain relatively infrequent. Here, we examine the impact of a woodland walk on an index of state positive body image (i.e., state body appreciation), as well as dispositional and environmental determinants of body image improvements. Eighty-seven Polish women went for a walk in Cygański Las, an ancient woodland, and completed a measure of state body appreciation before and after the walk. As hypothesised, state body appreciation was significantly higher post-walk compared to pre-walk (d = 0.56). Additionally, we found that the trait of self-compassion-but not the traits of connectedness to nature, perceived aesthetic qualities of the woodland, or subjective restoration-was significantly associated with larger improvements in state body appreciation. These results suggest that even relatively brief exposure to nature results in elevated state body appreciation, with the dispositional trait of self-compassion being associated with larger effects.
    Matched MeSH terms: Walking
  12. Abdul Yamin NAA, Basaruddin KS, Abu Bakar S, Salleh AF, Mat Som MH, Yazid H, et al.
    J Healthc Eng, 2022;2022:7716821.
    PMID: 36275397 DOI: 10.1155/2022/7716821
    This study aims to investigate the gait stability response during incline and decline walking for various surface inclination angles in terms of the required coefficient of friction (RCOF), postural stability index (PSI), and center of pressure (COP)-center of mass (COM) distance. A customized platform with different surface inclinations (0°, 5°, 7.5°, and 10°) was designed. Twenty-three male volunteers participated by walking on an inclined platform for each inclination. The process was then repeated for declined platform as well. Qualysis motion capture system was used to capture and collect the trajectories motion of ten reflective markers that attached to the subjects before being exported to a visual three-dimensional (3D) software and executed in Matlab to obtain the RCOF, PSI, as well as dynamic PSI (DPSI) and COP-COM distance parameters. According to the result for incline walking, during initial contact, the RCOF was not affected to inclination. However, it was affected during peak ground reaction force (GRF) starting at 7.5° towards 10° for both walking conditions. The most affected PSI was found at anterior-posterior PSI (APSI) even as low as 5° inclination during both incline and decline walking. On the other hand, DPSI was not affected during both walking conditions. Furthermore, COP-COM distance was most affected during decline walking in anterior-posterior direction. The findings of this research indicate that in order to decrease the risk of falling and manage the inclination demand, a suitable walking strategy and improved safety measures should be applied during slope walking, particularly for decline and anterior-posterior orientations. This study also provides additional understanding on the best incline walking technique for secure and practical incline locomotion.
    Matched MeSH terms: Walking/physiology
  13. Alyan E, Combe T, Awang Rambli DR, Sulaiman S, Merienne F, Muhaiyuddin NDM
    Int J Environ Res Public Health, 2021 Oct 29;18(21).
    PMID: 34769937 DOI: 10.3390/ijerph182111420
    The authors of this paper sought to investigate the impact of virtual forest therapy based on realistic versus dreamlike environments on reducing stress levels. Today, people are facing an increase in stress levels in everyday life, which may be due to personal life, work environment, or urban area expansion. Previous studies have reported that urban environments demand more attention and mental workload than natural environments. However, evidence for the effects of natural environments as virtual forest therapy on stress levels has not yet been fully explored. In this study, a total of 20 healthy participants completed a letter-detection test to increase their stress level and were then randomly assigned to two different virtual environments representing realistic and dreamlike graphics. The participants' stress levels were assessed using two physiological methods that measured heart rate and skin conductance levels and one psychological method through the Profile of Mood States (POMS) questionnaire. These indicators were analyzed using a sample t-test and a one-way analysis of variance. The results showed that virtual forest environments could have positive stress-relieving effects. However, realistic graphics were more efficient in reducing stress. These findings contribute to growing forest therapy concepts and provide new directions for future forest therapy research.
    Matched MeSH terms: Walking*
  14. Oviedo-Trespalacios O, Çelik AK, Marti-Belda A, Włodarczyk A, Demant D, Nguyen-Phuoc DQ, et al.
    Accid Anal Prev, 2021 Sep;159:106212.
    PMID: 34098429 DOI: 10.1016/j.aap.2021.106212
    Alcohol is a global risk factor for road trauma. Although drink driving has received most of the scholarly attention, there is growing evidence of the risks of alcohol-impaired walking. Alcohol-impaired pedestrians are over-represented in fatal crashes compared to non-impaired pedestrians. Additionally, empirical evidence shows that alcohol intoxication impairs road-crossing judgements. Besides some limited early research, much is unknown about the global prevalence and determinants of alcohol-impaired walking. Understanding alcohol-impaired walking will support health promotion initiatives and injury prevention. The present investigation has three aims: (1) compare the prevalence of alcohol-impaired walking across countries; (2) identify international groups of pedestrians based on psychosocial factors (i.e., Theory of Planned Behaviour (TPB) and perceptions of risk); and (3) investigate how segments of pedestrians form their intention for alcohol-impaired walking using the extended TPB (i.e. subjective norm, attitudes, perceived control, and perceived risk). A cross-sectional design was applied. The target behaviour question was "have you been a pedestrian when your thinking or physical ability (balance/strength) is affected by alcohol?" to ensure comparability across countries. Cluster analysis based on the extended TPB was used to identify groups of countries. Finally, regressions were used to predict pedestrians' intentions per group. A total of 6,166 respondents (Age M(SD) = 29.4 (14.2); Males = 39.2%) completed the questionnaire, ranging from 12.6% from Russia to 2.2% from Finland. The proportion of participants who reported never engaging in alcohol-impaired walking in the last three months ranged from 30.1% (Spain) to 83.1% (Turkey). Four groups of countries were identified: group-1 (Czech Republic, Spain, and Australia), group-2 (Russia and Finland), group-3 (Japan), and group-4 (final ten countries including Colombia, China, and Romania). Pedestrian intentions to engage in alcohol- impaired walking are predicted by perceptions of risk and TPB-psychosocial factors in group-1 and group-4. Favourable TPB-beliefs and low perceived risk increased alcohol-impaired walking intentions. Conversely, subjective norms were not significant in group-2 and only perceived risk predicted intention in group-3. The willingness of pedestrians to walk when alcohol-impaired differs significantly across the countries in this study. Perceived risk was the only common predictor among the 16 countries.
    Matched MeSH terms: Walking*
  15. Ahmed T, Moeinaddini M, Almoshaogeh M, Jamal A, Nawaz I, Alharbi F
    PMID: 34444563 DOI: 10.3390/ijerph18168813
    Crosswalks are critical locations in the urban transport network that need to be designed carefully as pedestrians are directly exposed to vehicular traffic. Although various methods are available to evaluate the level of service (LOS) at pedestrian crossings, pedestrian crossing facilities are frequently ignored in assessing crosswalk conditions. This study attempts to provide a comprehensive framework for evaluating crosswalks based on several essential indicators adopted from different guidelines. A new pedestrian crossing level of service (PCLOS) method is introduced in this research, with an aimto promote safe and sustainable operations at such locations. The new PCLOS employs an analytical point system to compare existing street crossing conditions to the guidelines' standards, taking into account the scores and coefficients of the indicators. The quantitative scores and coefficients of indicators are assigned based on field observations and respondent opinions. The method was tested to evaluate four pedestrian crosswalks in the city of Putrajaya, Malaysia. A total of 17 indicators were selected for the study after a comprehensive literature review. Survey results show that the provision of a zebra crossing was the most critical indicator at the pedestrian crossings, while drainage near crosswalks was regarded as the least important. Four indicators had a coefficient value above 4, indicating that these are very critical pedestrian crossing facilities and significantly impact the calculation of LOS for pedestrian crossings. Four crosswalks were evaluated using the proposed method in Putrajaya, Malaysia. The crosswalk at the Ministry of Domestic Trade Putrajaya got the "PCLOS A". In contrast, the midblock crossing in front of the Putrajaya Corporation was graded "PCLOS C". While the remaining two crosswalks were graded as "PCLOS B" crosswalks. Based on the assigned PCLOS grade, the proposed method could also assist in identifying current design and operation issues in existing pedestrian crossings and providing sound policy recommendations for improvements to ensure pedestrian safety.
    Matched MeSH terms: Walking
  16. Mehdizadeh S, Glazier PS
    Comput Methods Biomech Biomed Engin, 2021 Aug;24(10):1097-1103.
    PMID: 33426927 DOI: 10.1080/10255842.2020.1867852
    Whether higher variability in older adults' walking is an indication of increased instability has been challenged recently. We performed a computer simulation to investigate the effect of sensorimotor noise on the kinematic variability and stability in a biped walking model. Stochastic differential equations of the system with additive Gaussian white noise was constructed and solved. Sensorimotor noise mainly resulted in higher kinematic variability but its influence on gait stability is minimal. This implies that kinematic variability evident in walking gaits of older adults could be the result of internal sensorimotor noise and not an indication of instability.
    Matched MeSH terms: Walking*
  17. Mardhati M, González LA, Thomson PC, Clark CEF, García SC
    J Dairy Sci, 2021 Jul;104(7):8202-8213.
    PMID: 33865596 DOI: 10.3168/jds.2020-19912
    Monitoring and detecting individual cows' liveweight (LW) and liveweight change (LWC) are important for estimation of nutritional requirements and health management, and could be useful to measure short-term feed intake, water consumption, defecation, and urination. Walk-over weighing (WOW) systems can facilitate measurements of LW for these purposes, providing automated LW recorded at different times of the day. We conducted a field study to (1) quantify the contribution of feed and water intake, as well as urine and feces excretions, to short-term LWC and (2) determine the feasibility of stationary and WOW scales to detect subtle changes in LW as a result of feed and water intake, urination, and defecation. In this experiment, 10 cows walked through a WOW system and then stood individually on a stationary scale collecting weights at 10 and 3.3 Hz, respectively. Cows were offered 4 kg of feed and 10 kg of water on the stationary scale. For each animal, LW before and after eating and drinking was then calculated using different approaches. Liveweight change was calculated as the difference between the initial and final LW before and after eating and drinking for each statistical measure. The weights of feed intake, water consumption, urination, and defecation were measured and used as predictors of LWC. Urine and feces were collected from individual cows while the cow was on the scale, using a container, and weighed separately. The agreement between LWC measured using either stationary or WOW scales was assessed to determine the sensitivity of the scales to detect subtle changes in LW using the coefficient of determination (R2), Lin's concordance correlation coefficient (CCC), and mean bias. The prediction model showed that most of the regression coefficients were not significantly different from +1.0 for feed and water, or -1.0 for urine and feces. The R2 and CCC values demonstrated a satisfactory agreement between calculated and stationary LWC and values ranged from 0.60 to 0.92 and 0.71 to 0.94, respectively. A moderate agreement was achieved between calculated and automated LWC with R2 and Lin's CCC values of 0.45 to 0.63 and 0.60 to 0.74, respectively. Therefore, results demonstrated that new algorithms and data processing methods need to be continuously explored and improved to obtain accurate measurements of LW to measure changes in LW, especially from WOW scales.
    Matched MeSH terms: Walking
  18. Musa H, Ismail II, Abdul Rashid NH
    Paediatr Int Child Health, 2021 May;41(2):158-161.
    PMID: 32937094 DOI: 10.1080/20469047.2020.1816285
    Paediatric scurvy is uncommon in the modern age but cases have been reported in children with neurodevelopmental issues and restricted dietary habits. The broad clinical picture is frequently overlooked as primarily other systemic diseases are considered first leading to extensive investigations and delay in diagnosis. A 4-year-old boy with autism and bilateral lower limb pain and refusal to walk is reported. His restricted diet and radiographic findings were highly suggestive of scurvy which was confirmed by the extremely low levels of ascorbic acid. Treatment with ascorbic acid replenishment and maintenance resulted in remarkable improvement. This case highlights the importance of a high index of suspicion in at-risk children so as to avoid unnecessary invasive investigations and procedures.
    Matched MeSH terms: Walking
  19. Saad MF, Cheah WL, Hazmi H
    J Prev Med Public Health, 2021 May;54(3):199-207.
    PMID: 34092066 DOI: 10.3961/jpmph.20.584
    OBJECTIVES: Physical inactivity is the fourth leading global risk factor for mortality, followed by obesity. The combination of these risk factors is associated with non-communicable diseases, impaired physical function, and declining mental function. The World Health Organization recommends physical activity to reduce the mortality rate. Thus, this study examined the effects on anthropometric measurements of a 12-week walking program for elderly people in Samarahan, Sarawak, Malaysia with a 7000-step goal and weekly group walking activities.

    METHODS: A quasi-experimental study was conducted involving 109 elderly people with a body mass index (BMI) ≥25.0 kg/m2. BMI, body composition, and average daily steps were measured at baseline, 6 weeks, and 12 weeks. Data were analyzed using SPSS version 26.0, and repeated-measures analysis of variance with the paired t-test for post-hoc analysis was conducted.

    RESULTS: In total, 48 participants in the intervention group and 61 participants in the control group completed the study. A significant interaction was found between time and group. The post-hoc analysis showed a significant difference between pre-intervention and post-intervention (within the intervention group). The post-intervention analysis revealed an increase in the mean number of daily steps by 3571.59, with decreases in body weight (-2.20 kg), BMI (-0.94 kg/m2), body fat percentage (-3.52%), visceral fat percentage (-1.29%) and waist circumference (-2.91 cm). Skeletal muscle percentage also showed a significant increase (1.67%).

    CONCLUSIONS: A 12-week walking program combining a 7000-step goals with weekly group walking activities had a significant effect on the anthropometric measurements of previously inactive and overweight/obese elderly people.

    Matched MeSH terms: Walking/physiology; Walking/psychology; Walking/statistics & numerical data*
  20. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Alqahtani M, Almijalli M, et al.
    Sensors (Basel), 2021 Apr 17;21(8).
    PMID: 33920617 DOI: 10.3390/s21082836
    Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.
    Matched MeSH terms: Walking; Walking Speed*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links