Displaying publications 181 - 200 of 250 in total

Abstract:
Sort:
  1. Smith DG, Ng J, George D, Trask JS, Houghton P, Singh B, et al.
    Am J Phys Anthropol, 2014 Sep;155(1):136-48.
    PMID: 24979664 DOI: 10.1002/ajpa.22564
    Two subspecies of cynomolgus macaques (Macaca fascicularis) are alleged to co-exist in the Philippines, M. f. philippensis in the north and M. f. fascicularis in the south. However, genetic differences between the cynomolgus macaques in the two regions have never been studied to document the propriety of their subspecies status. We genotyped samples of cynomolgus macaques from Batangas in southwestern Luzon and Zamboanga in southwestern Mindanao for 15 short tandem repeat (STR) loci and sequenced an 835 bp fragment of the mtDNA of these animals. The STR genotypes were compared with those of cynomolgus macaques from southern Sumatra, Singapore, Mauritius and Cambodia, and the mtDNA sequences of both Philippine populations were compared with those of cynomolgus macaques from southern Sumatra, Indonesia and Sarawak, Malaysia. We conducted STRUCTURE and PCA analyses based on the STRs and constructed a median joining network based on the mtDNA sequences. The Philippine population from Batangas exhibited much less genetic diversity and greater genetic divergence from all other populations, including the Philippine population from Zamboanga. Sequences from both Batangas and Zamboanga were most closely related to two different mtDNA haplotypes from Sarawak from which they are apparently derived. Those from Zamboanga were more recently derived than those from Batangas, consistent with their later arrival in the Philippines. However, clustering analyses do not support a sufficient genetic distinction of cynomolgus macaques from Batangas from other regional populations assigned to subspecies M. f. fascicularis to warrant the subspecies distinction M. f. philippensis.
    Matched MeSH terms: Microsatellite Repeats
  2. Nwawuba Stanley U, Mohammed Khadija A, Bukola AT, Omusi Precious I, Ayevbuomwan Davidson E
    Malays J Med Sci, 2020 Jul;27(4):22-35.
    PMID: 32863743 DOI: 10.21315/mjms2020.27.4.3
    Short tandem repeat (STR) typing continues to be the primary workhorse in forensic DNA profiling. Therefore, the present review discusses the prominent role of STR marker in criminal justice system. All over the world, deoxyribonucleic acid (DNA) profiling provides evidence that may be used to convict criminals, as an irrefutable proof of wrongful convictions, invaluable links to the actual perpetrators of crimes, and could also deter some offenders from committing more serious offences. Clearly, DNA profiling tools have also aided forensic scientists to re-evaluate old cases that were considered closed as a result of inadequate evidence. In carrying out this review, a comprehensive electronic literature search using PubMed, ScienceDirect, Google Scholar and Google Search were used, and all works meeting the subject matter were considered, including reviews, retrospective studies, observational studies and original articles. Case reports presented here, further demonstrates the crucial role of forensic DNA profiling in mitigating and providing compelling evidence for the resolution of crimes. For case report 1, there was a 100% match between the DNA recovered from the items found in the crime scene, and the suspect's DNA sample collected via buccal swab following 15 STR loci examination. Case report 2 further highlights the indispensable contribution of DNA database in solving crime. Therefore, it has become very necessary for developing countries like Nigeria to develop a national DNA database and make policies and legislatures that will further expand and enable the practice of forensic genetics, particularly DNA profiling.
    Matched MeSH terms: Microsatellite Repeats
  3. Golestan Hashemi FS, Rafii MY, Ismail MR, Mohamed MT, Rahim HA, Latif MA, et al.
    Gene, 2015 Jan 25;555(2):101-7.
    PMID: 25445269 DOI: 10.1016/j.gene.2014.10.048
    MRQ74, a popular aromatic Malaysian landrace, allows for charging considerably higher prices than non-aromatic landraces. Thus, breeding this profitable trait has become a priority for Malaysian rice breeding. Despite many studies on aroma genetics, ambiguities considering its genetic basis remain. It has been observed that identifying quantitative trait loci (QTLs) based on anchor markers, particularly candidate genes controlling a trait of interest, can increase the power of QTL detection. Hence, this study aimed to locate QTLs that influence natural variations in rice scent using microsatellites and candidate gene-based sequence polymorphisms. For this purpose, an F2 mapping population including 189 individual plants was developed by MRQ74 crosses with 'MR84', a non-scented Malaysian accession. Additionally, qualitative and quantitative approaches were applied to obtain a phenotype data framework. Consequently, we identified two QTLs on chromosomes 4 and 8. These QTLs explained from 3.2% to 39.3% of the total fragrance phenotypic variance. In addition, we could resolve linkage group 8 by adding six gene-based primers in the interval harboring the most robust QTL. Hence, we could locate a putative fgr allele in the QTL found on chromosome 8 in the interval RM223-SCU015RM (1.63cM). The identified QTLs represent an important step toward recognition of the rice flavor genetic control mechanism. In addition, this identification will likely accelerate the progress of the use of molecular markers for gene isolation, gene-based cloning, and marker-assisted selection breeding programs aimed at improving rice cultivars.
    Matched MeSH terms: Microsatellite Repeats/genetics*
  4. Rahim HA, Bhuiyan MA, Lim LS, Sabu KK, Saad A, Azhar M, et al.
    Genet. Mol. Res., 2012;11(3):3277-89.
    PMID: 23079822 DOI: 10.4238/2012.September.12.11
    Advanced backcross families derived from Oryza sativa cv MR219/O. rufipogon IRGC105491 were utilized for identification of quantitative trait loci (QTL) for blast resistance using simple sequence repeat markers. Two hundred and sixty-one BC(2)F(3) families were used to construct a linkage map, using 87 markers, which covered 2375.2 cM of 12 rice chromosomes, with a mean density of 27.3 cM. The families were evaluated in a greenhouse for resistance to blast disease caused by pathotypes P7.2 and P5.0 of Magnaporthe oryzae. Five QTLs (qBL5.1, qBL5.2, qBL6.1, qBL8.1, and qBL10.1) for pathotype P5.0 and four QTLs (qBL5.3, qBL5.4, qBL7.1, and qBL8.2) for pathotype P7.2 were identified using the BC(2)F(3) families. Another linkage map was also constructed based on 31 BC(2)F(5) families, using 63 SSR markers, which covered 474.9 cM of 9 rice chromosomes, with a mean density of 8.01 cM. Five suggestive QTLs (qBL11.2, qBL11.3, qBL12.1, qBL12.2, qBL12.3) and one putative QTL (qBL2.1) were identified for pathotype P7.2. Also, seven suggestive QTLs (qBL1.1, qBL2.2, qBL4.1, qBL4.2, qBL5.3, qBL8.3, and qBL11.1) were detected for pathotype P5.0. We conclude that there is a non-race-specific resistance spectrum of O. rufipogon against M. oryzae pathotypes.
    Matched MeSH terms: Microsatellite Repeats/genetics
  5. Nargesi MM, Ismail P, Razack AH, Pasalar P, Nazemi A, Oshkoor SA, et al.
    Asian Pac J Cancer Prev, 2011;12(5):1265-8.
    PMID: 21875279
    PURPOSE: Prostate cancer differs markedly in incidence across ethnic groups. Since this disease is influenced by complex genetics, it is many genetic factors may affect the level of susceptibility to development of the disease. In this study, four Y-linked short tandem repeats (STRs), DYS388, DYS435, DYS437, and DYS439, were genotyped to compare Malaysian prostate cancer patients and normal control males.

    MATERIALS AND METHODS: A total of 175 subjects comprising 84 patients and 91 healthy individuals were recruited. Multiplex PCR was optimized to co-amplify DYS388, DYS435, DYS437, and DYS439 loci. All samples were genotyped for alleles of four DYS loci using a Genetic Analysis System.

    RESULTS: Of all DYS loci, allele 10 (A) of DYS388 had a significantly lower incidence of disease in compare with other alleles of this locus, while a higher incidence of disease was found among males who had either allele 12 (C) of DYS388 or allele 14 (E) of DYS439. Moreover, a total of 47 different haplotypes comprising different alleles of four DYS loci were found among the whole study samples, of which haplotypes AABC and CAAA showed a lower and higher frequency among cases than controls, respectively.

    CONCLUSIONS: It is likely that Malaysian males who belong to Y-lineages with either allele 12 of DYS388, allele 14 of DYS439, or haplotype CAAA are more susceptible to develop prostate cancer, while those belonging to lineages with allele 10 of DYS388 or haplotype AABC are more resistant to the disease.

    Matched MeSH terms: Microsatellite Repeats/genetics
  6. Latif MA, Rafii Yusop M, Motiur Rahman M, Bashar Talukdar MR
    C. R. Biol., 2011 Apr;334(4):282-9.
    PMID: 21513897 DOI: 10.1016/j.crvi.2011.02.003
    A total of 78 alleles and 29 loci were detected from nine microsatellite and three minisatellite markers, respectively across 26 blast and ufra disease resistant genotypes. For blast resistant genotypes, the Polymorphic Information Content (PIC) values ranged from 0.280 to 0.726 and RM21 was considered as the best marker. PIC values ranged from 0.5953 to 0.8296 for ufra resistant genotypes and RM23 was the best marker for characterization of ufra resistant genotypes. The genetic similarity analysis using UPGMA clustering generated nine clusters with coefficient of 0.66 for blast resistant genotypes while five genetic clusters with similarity coefficient of 0.42 for ufra resistant genotypes. In order to develop resistant varieties of two major diseases of rice, hybridisation should be made using the parents, BR29 and NJ70507, BR36 and NJ70507 for blast, while BR11 and Aokazi, BR3 and Aokazi, Rayda and BR3 and Rayda and BR11 for ufra.
    Matched MeSH terms: Microsatellite Repeats/genetics*
  7. Ashazila MJ, Kannan TP, Venkatesh RN, Hoh BP
    Oral Oncol, 2011 May;47(5):358-64.
    PMID: 21450513 DOI: 10.1016/j.oraloncology.2011.03.005
    Loss of heterozygosity (LOH) and microsatellite instability (MSI) have been documented as important events in oral squamous cell carcinoma (OSCC). Five microsatellite markers D3S192, D3S966, D3S647, D3S1228 and D3S659 were selected on chromosome 3p because of high frequency of alterations reported in head and neck squamous cell carcinoma and the involvement of von Hippel Lindau (VHL) at 3p25-26 and the fragile histidine triad (FHIT) at 3p14.2 genes proven in many tumour types. A total of 50 archival tissue samples of OSCC and corresponding normal samples were analyzed for LOH and MSI status. The overall LOH for the markers selected on 3p was 56 out of 189 informative cases (29.6%). The most frequent LOH was identified for the marker D3S966 which was 18/42 (42.8%) of informative cases suggesting the presence of putative tumour suppressor genes (TSGs) in this loci. In this study, high frequency of microsatellite instability was found in D3S966 which was 28.6% of informative cases; this reveals the possibility of mutations of MMR genes in this region. Frequent microsatellite alterations (MA) were observed in 3 markers D3S966 (71.4%), D3S1228 (56.7%) and D3S192 (41.0%). There was no significant association between LOH with gender, tumour stages and differentiation grades. However, there was a significant association between tumour stage and differentiation grades with MSI status in OSCC in Malaysian population with p values of 0.002 and 0.035, respectively. There was also a significant association between MA and differentiation grades (p=0.041).
    Matched MeSH terms: Microsatellite Repeats/genetics
  8. Ong WD, Voo CL, Kumar SV
    Mol Biol Rep, 2012 May;39(5):5889-96.
    PMID: 22207174 DOI: 10.1007/s11033-011-1400-3
    Improving the quality of the non-climacteric fruit, pineapple, is possible with information on the expression of genes that occur during the process of fruit ripening. This can be made known though the generation of partial mRNA transcript sequences known as expressed sequence tags (ESTs). ESTs are useful not only for gene discovery but also function as a resource for the identification of molecular markers, such as simple sequence repeats (SSRs). This paper reports on firstly, the construction of a normalized library of the mature green pineapple fruit and secondly, the mining of EST-SSRs markers using the newly obtained pineapple ESTs as well as publically available pineapple ESTs deposited in GenBank. Sequencing of the clones from the EST library resulted in 282 good sequences. Assembly of sequences generated 168 unique transcripts (UTs) consisting of 34 contigs and 134 singletons with an average length of ≈500 bp. Annotation of the UTs categorized the known proteins transcripts into the three ontologies as: molecular function (34.88%), biological process (38.43%), and cellular component (26.69%). Approximately 7% (416) of the pineapple ESTs contained SSRs with an abundance of trinucleotide SSRs (48.3%) being identified. This was followed by dinucleotide and tetranucleotide SSRs with frequency of 46 and 57%, respectively. From these EST-containing SSRs, 355 (85.3%) matched to known proteins while 133 contained flanking regions for primer design. Both the ESTs were sequenced and the mined EST-SSRs will be useful in the understanding of non-climacteric ripening and the screening of biomarkers linked to fruit quality traits.
    Matched MeSH terms: Microsatellite Repeats/genetics*
  9. Chang YM, Swaran Y, Phoon YK, Sothirasan K, Sim HT, Lim KB, et al.
    Forensic Sci Int Genet, 2009 Jun;3(3):e77-80.
    PMID: 19414156 DOI: 10.1016/j.fsigen.2008.07.007
    17 Y-STRs (DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635 or Y-GATA C4, DYS392, Y-GATA H4, DYS437, DYS438 and DYS448) have been analyzed in 320 male individuals from Sarawak, an eastern state of Malaysia on the Borneo island using the AmpFlSTR Y-filer (Applied Biosystems, Foster City, CA). These individuals were from three indigenous ethnic groups in Sarawak comprising of 103 Ibans, 113 Bidayuhs and 104 Melanaus. The observed 17-loci haplotypes and the individual allele frequencies for each locus were estimated, whilst the locus diversity, haplotype diversity and discrimination capacity were calculated in the three groups. Analysis of molecular variance (AMOVA) indicated that 87.6% of the haplotypic variation was found within population and 12.4% between populations (fixation index F(ST)=0.124, p=0.000). This study has revealed that the indigenous populations in Sarawak are distinctly different to each other, and to the three major ethnic groups in Malaysia (Malays, Chinese and Indians), with the Melanaus having a strikingly high degree of shared haplotypes within. There are rare unusual variants and microvariants that were not present in Malaysian Malay, Chinese or Indian groups. In addition, occurrences of DYS385 duplications which were only noticeably present in Chinese group previously was also observed in the Iban group whilst null alleles were detected at several Y-loci (namely DYS19, DYS392, DYS389II and DYS448) in the Iban and Melanau groups.
    Matched MeSH terms: Microsatellite Repeats*
  10. Tay BY, Ahmad N, Hashim R, Mohamed Zahidi J, Thong KL, Koh XP, et al.
    BMC Infect Dis, 2015;15:220.
    PMID: 26033227 DOI: 10.1186/s12879-015-0958-0
    Brucellosis is one of the most common zoonotic diseases worldwide. It can cause acute febrile illness in human and is a major health problem. Studies in human brucellosis in Malaysia is limited and so far no genotyping studies has been done on Brucella isolates. The aim of the study was to determine the genetic diversity among Brucella species isolated from human brucellosis, obtained over a 6-year period (2009-2014).
    Matched MeSH terms: Microsatellite Repeats/genetics
  11. Hasoon MF, Daud HM, Abdullah AA, Arshad SS, Bejo HM
    In Vitro Cell Dev Biol Anim, 2011 Jan;47(1):16-25.
    PMID: 21082288 DOI: 10.1007/s11626-010-9348-5
    A new cell line, Asian sea bass brain (ASBB), was derived from the brain tissue of Asian sea bass Lates calcarifer. This cell line was maintained in Leibovitz L-15 media supplemented with 10% fetal bovine serum (FBS). The ASBB cell line was subcultured more than 60 times over a period of 15 mo. The ASBB cell line consists predominantly of fibroblastic-like cells and was able to grow at temperatures between 20°C and 30°C with an optimum temperature of 25°C. The growth rate of these cells increased as the proportion of FBS increased from 2% to 20% at 25°C with optimum growth at the concentrations of 10% or 15% FBS. Polymerase chain reaction products were obtained from ASBB cells and tissues of sea bass with primer sets of microsatellite markers of sea bass. An isolate of piscine nodavirus from juveniles of marine fish species tested positive by IQ2000 kit for viral nervous necrosis detection and was examined for its infectivity to a fish cell line of ASBB. A marine fish betanodavirus was tested to determine the susceptibility of this new cell line in comparison with commercial highly permissive SSN-1 cells. The ASBB cell line was found to be susceptible to nodavirus (RGNNV genotype), and the infection was confirmed by comparison cytopathic effect (CPE) with commercial SSN-1 and reverse transcriptase-polymerase chain reaction. A nodavirus was further elucidated by electron microscopy, and the virus tested was shown to induce CPE on ASBB cells with significant high titer. This suggests that the ASBB cell line has good potential for the isolation of fish viruses.
    Matched MeSH terms: Microsatellite Repeats/genetics
  12. Conway DJ, Machado RL, Singh B, Dessert P, Mikes ZS, Povoa MM, et al.
    Mol Biochem Parasitol, 2001 Jul;115(2):145-56.
    PMID: 11420101
    Comparing patterns of genetic variation at multiple loci in the genome of a species can potentially identify loci which are under selection. The large number of polymorphic microsatellites in the malaria parasite Plasmodium falciparum are available markers to screen for selectively important loci. The Pfs48/45 gene on Chromosome 13 encodes an antigenic protein located on the surface of parasite gametes, which is a candidate for a transmission blocking vaccine. Here, genotypic data from 255 P. falciparum isolates are presented, which show that alleles and haplotypes of five single nucleotide polymorphisms (SNPs) in the Pfs48/45 gene are exceptionally skewed in frequency among different P. falciparum populations, compared with alleles at 11 microsatellite loci sampled widely from the parasite genome. Fixation indices measuring inter-population variance in allele frequencies (F(ST)) were in the order of four to seven times higher for Pfs48/45 than for the microsatellites, whether considered (i) among populations within Africa, or (ii) among different continents. Differing mutational processes at microsatellite and SNP loci could generally affect the population structure at these different types of loci, to an unknown extent which deserves further investigation. The highly contrasting population structure may also suggest divergent selection on the amino acid sequence of Pfs48/45 in different populations, which plausibly indicates a role for the protein in determining gamete recognition and compatibility.
    Matched MeSH terms: Microsatellite Repeats/genetics*
  13. Biswas MK, Bagchi M, Biswas D, Harikrishna JA, Liu Y, Li C, et al.
    Genes (Basel), 2020 12 09;11(12).
    PMID: 33317074 DOI: 10.3390/genes11121479
    Trait tagging through molecular markers is an important molecular breeding tool for crop improvement. SSR markers encoded by functionally relevant parts of a genome are well suited for this task because they may be directly related to traits. However, a limited number of these markers are known for Musa spp. Here, we report 35136 novel functionally relevant SSR markers (FRSMs). Among these, 17,561, 15,373 and 16,286 FRSMs were mapped in-silico to the genomes of Musa acuminata, M. balbisiana and M. schizocarpa, respectively. A set of 273 markers was validated using eight accessions of Musa spp., from which 259 markers (95%) produced a PCR product of the expected size and 203 (74%) were polymorphic. In-silico comparative mapping of FRSMs onto Musa and related species indicated sequence-based orthology and synteny relationships among the chromosomes of Musa and other plant species. Fifteen FRSMs were used to estimate the phylogenetic relationships among 50 banana accessions, and the results revealed that all banana accessions group into two major clusters according to their genomic background. Here, we report the first large-scale development and characterization of functionally relevant Musa SSR markers. We demonstrate their utility for germplasm characterization, genetic diversity studies, and comparative mapping in Musa spp. and other monocot species. The sequences for these novel markers are freely available via a searchable web interface called Musa Marker Database.
    Matched MeSH terms: Microsatellite Repeats/genetics*
  14. Alam MT, Vinayak S, Congpuong K, Wongsrichanalai C, Satimai W, Slutsker L, et al.
    Antimicrob Agents Chemother, 2011 Jan;55(1):155-64.
    PMID: 20956597 DOI: 10.1128/AAC.00691-10
    The emergence and spread of drug-resistant Plasmodium falciparum have been a major impediment for the control of malaria worldwide. Earlier studies have shown that similar to chloroquine (CQ) resistance, high levels of pyrimethamine resistance in P. falciparum originated independently 4 to 5 times globally, including one origin at the Thailand-Cambodia border. In this study we describe the origins and spread of sulfadoxine-resistance-conferring dihydropteroate synthase (dhps) alleles in Thailand. The dhps mutations and flanking microsatellite loci were genotyped for P. falciparum isolates collected from 11 Thai provinces along the Burma, Cambodia, and Malaysia borders. Results indicated that resistant dhps alleles were fixed in Thailand, predominantly being the SGEGA, AGEAA, and SGNGA triple mutants and the AGKAA double mutant (mutated codons are underlined). These alleles had different geographical distributions. The SGEGA alleles were found mostly at the Burma border, while the SGNGA alleles occurred mainly at the Cambodia border and nearby provinces. Microsatellite data suggested that there were two major genetic lineages of the triple mutants in Thailand, one common for SGEGA/SGNGA alleles and another one independent for AGEAA. Importantly, the newly reported SGNGA alleles possibly originated at the Thailand-Cambodia border. All parasites in the Yala province (Malaysia border) had AGKAA alleles with almost identical flanking microsatellites haplotypes. They were also identical at putatively neutral loci on chromosomes 2 and 3, suggesting a clonal nature of the parasite population in Yala. In summary, this study suggests multiple and independent origins of resistant dhps alleles in Thailand.
    Matched MeSH terms: Microsatellite Repeats/genetics
  15. King JL, Churchill JD, Novroski NMM, Zeng X, Warshauer DH, Seah LH, et al.
    Forensic Sci Int Genet, 2018 09;36:60-76.
    PMID: 29935396 DOI: 10.1016/j.fsigen.2018.06.005
    The use of single nucleotide polymorphisms (SNPs) in forensic genetics has been limited to challenged samples with low template and/or degraded DNA. The recent introduction of massively parallel sequencing (MPS) technologies has expanded the potential applications of these markers and increased the discrimination power of well-established loci by considering variation in the flanking regions of target loci. The ForenSeq Signature Preparation Kit contains 165 SNP amplicons for ancestry- (aiSNPs), identity- (iiSNPs), and phenotype-inference (piSNPs). In this study, 714 individuals from four major populations (African American, AFA; East Asian, ASN; US Caucasian, CAU; and Southwest US Hispanic, HIS) previously reported by Churchill et al. [Forensic Sci Int Genet. 30 (2017) 81-92; DOI: https://doi.org/10.1016/j.fsigen.2017.06.004] were assessed using STRait Razor v2s to determine the level of diversity in the flanking regions of these amplicons. The results show that nearly 70% of loci showed some level of flanking region variation with 22 iiSNPs and 8 aiSNPs categorized as microhaplotypes in this study. The heterozygosities of these microhaplotypes approached, and in one instance surpassed, those of some core STR loci. Also, the impact of the flanking region on other forensic parameters (e.g., power of exclusion and power of discrimination) was examined. Sixteen of the 94 iiSNPs had an effective allele number greater than 2.00 across the four populations. To assess what effect the flanking region information had on the ancestry inference, genotype probabilities and likelihood ratios were determined. Additionally, concordance with the ForenSeq UAS and Nextera Rapid Capture was evaluated, and patterns of heterozygote imbalance were identified. Pairwise comparison of the iiSNP diplotypes determined the probability of detecting a mixture (i.e., observing ≥ 3 haplotypes) using these loci alone was 0.9952. The improvement in random match probabilities for the full regions over the target iiSNPs was found to be significant. When combining the iiSNPs with the autosomal STRs, the combined match probabilities ranged from 6.40 × 10-73 (ASN) to 1.02 × 10-79 (AFA).
    Matched MeSH terms: Microsatellite Repeats*
  16. Wu Q, Miao G, Li X, Liu W, Ikhwanuddin M, Ma H
    Mol Biol Rep, 2018 Dec;45(6):1913-1918.
    PMID: 30203240 DOI: 10.1007/s11033-018-4339-9
    The blue swimming crab (Portunus pelagicus) is a valuable marine fishery resource in Indo-West Pacific Ocean. So far, rare genetic resource of this species is available. In this report, the restriction-site associated DNA (RAD) approach was employed to mine the genomic information and identify molecular markers in P. pelagicus. A total of 0.82 Gbp clean data were generated from the genome of individual "X2A". De novo assembly produced 85,796 contigs with an average length of 339 bp. A total of 45,464 putative SNPs and 17,983 microsatellite loci were identified from the genomes of ten individuals. Furthermore, 31 pairs of primers were successfully designed, with 16 of them exhibiting polymorphism in a wild population. For these polymorphic loci, the expected and observed alleles per locus ranged from 1.064 to 7.314 and from 2 to 11, respectively. The expected and observed heterozygosity per locus ranged from 0.0615 to 0.819 and from 0.0626 to 1.000, respectively. Nine loci showed high informative with polymorphism information content (PIC) > 0.5. Five loci significantly deviated from Hardy-Weinberg equilibrium in the samples analyzed. No linkage disequilibrium was found among the 16 polymorphic microsatellite loci. This study provided massive genetic resource and polymorphic molecular markers that should be helpful for studies on conservation genetics, population dynamics and genetic diversity of P. pelagicus and related crab species.
    Matched MeSH terms: Microsatellite Repeats/genetics
  17. Kondo T, Nishimura S, Tani N, Ng KK, Lee SL, Muhammad N, et al.
    Am J Bot, 2016 Nov;103(11):1912-1920.
    PMID: 27797714
    PREMISE OF THE STUDY: In tropical rainforests of Southeast Asia, a highly fecund thrips (Thrips spp.) responds rapidly to the mass flowering at multiple-year intervals characteristic of certain species such as the canopy tree studied here, Shorea acuminata, by feeding on flower resources. However, past DNA analyses of pollen adherent to thrips bodies revealed that the thrips promoted a very high level of self-pollination. Here, we identified the pollinator that contributes to cross-pollination and discuss ways that the pollination system has adapted to mass flowering.

    METHODS: By comparing the patterns of floral visitation and levels of genetic diversity in adherent pollen loads among floral visitors, we evaluated the contribution of each flower visitor to pollination.

    KEY RESULTS: The big-eyed bug, Geocoris sp., a major thrips predator, was an inadvertent pollinator, and importantly contributed to cross-pollination. The total outcross pollen adhering to thrips was approximately 30% that on the big-eyed bugs. Similarly, 63% of alleles examined in S. acuminata seeds and seedlings occurred in pollen adhering to big-eyed bugs; about 30% was shared with pollen from thrips.

    CONCLUSIONS: During mass flowering, big-eyed bugs likely travel among flowering S. acuminata trees, attracted by the abundant thrips. Floral visitation patterns of big-eyed bugs vs. other insects suggest that these bugs can maintain their population size between flowering by preying upon another thrips (Haplothrips sp.) that inhabits stipules of S. acuminata throughout the year and quickly respond to mass flowering. Thus, thrips and big-eyed bugs are essential components in the pollination of S. acuminata.

    Matched MeSH terms: Microsatellite Repeats/genetics
  18. Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, et al.
    Sci Rep, 2019 Feb 28;9(1):3047.
    PMID: 30816255 DOI: 10.1038/s41598-019-39944-2
    Curcuma alismatifolia widely used as an ornamental plant in Thailand and Cambodia. This species of herbaceous perennial from the Zingiberaceae family, includes cultivars with a wide range of colours and long postharvest life, and is used as an ornamental cut flower, as a potted plant, and in exterior landscapes. For further genetic improvement, however, little genomic information and no specific molecular markers are available. The present study used Illumina sequencing and de novo transcriptome assembly of two C. alismatifolia cvs, 'Chiang Mai Pink' and 'UB Snow 701', to develop simple sequence repeat markers for genetic diversity studies. After de novo assembly, 62,105 unigenes were generated and 48,813 (78.60%) showed significant similarities versus six functional protein databases. In addition, 9,351 expressed sequence tag-simple sequence repeats (EST-SSRs) were identified with a distribution frequency of 12.5% total unigenes. Out of 8,955 designed EST-SSR primers, 150 primers were selected for the development of potential molecular markers. Among these markers, 17 EST-SSR markers presented a moderate level of genetic diversity among three C. alismatifolia cultivars, one hybrid, three Curcuma, and two Zingiber species. Three different genetic groups within these species were revealed using EST-SSR markers, indicating that the markers developed in this study can be effectively applied to the population genetic analysis of Curcuma and Zingiber species. This report describes the first analysis of transcriptome data of an important ornamental ginger cultivars, also provides a valuable resource for gene discovery and marker development in the genus Curcuma.
    Matched MeSH terms: Microsatellite Repeats/genetics*
  19. Abdullah N, Rafii Yusop M, Ithnin M, Saleh G, Latif MA
    C. R. Biol., 2011 Apr;334(4):290-9.
    PMID: 21513898 DOI: 10.1016/j.crvi.2011.01.004
    Studies were conducted to assess the genetic relationships between the parental palms (dura and pisifera) and performance of their progenies based on nine microsatellite markers and 29 quantitative traits. Correlation analyses between genetic distances and hybrids performance were estimated. The coefficients of correlation values of genetic distances with hybrid performance were non-significant, except for mean nut weight and leaf number. However, the correlation coefficient of genetic distances with these characters was low to be used as predicted value. These results indicated that genetic distances based on the microsatellite markers may not be useful for predicting hybrid performance. The genetic distance analysis using UPGMA clustering system generated 5 genetic clusters with coefficient of 1.26 based on quantitative traits of progenies. The genotypes, DP16, DP14, DP4, DP13, DP12, DP15, DP8, DP1 and DP2 belonging to distant clusters and greater genetic distances could be selected for further breeding programs.
    Matched MeSH terms: Microsatellite Repeats/genetics
  20. Lai MI, Garner C, Jiang J, Silver N, Best S, Menzel S, et al.
    Twin Res Hum Genet, 2010 Dec;13(6):567-72.
    PMID: 21142933 DOI: 10.1375/twin.13.6.567
    Cytotoxic precipitation of free α-globin monomers and its production of reactive oxygen species cause red cell membrane damage that leads to anemia and eventually ineffective erythropoiesis in β-thalassemia. Alpha hemoglobin stabilizing protein (AHSP) was found to bind only to free α-globin monomers creating a stable and inert complex which remains soluble in the cytoplasm thus preventing harmful precipitations. Alpha hemoglobin stabilizing protein was shown to bind nascent α-globin monomers with transient strength before transferring α-globin to β-globin to form hemoglobin tetramer. A classical twin study would be beneficial to investigate the role of genetics and environment in the variation of alpha hemoglobin stabilizing protein expression as this knowledge will enable us to determine further investigations with regards to therapeutic interventions if alpha hemoglobin stabilizing protein is to be a therapeutic agent for β-thalassemia. This study investigates the heritability influence of alpha hemoglobin stabilizing protein expression and factors that may contribute to this. Results indicated that a major proportion of alpha hemoglobin stabilizing protein expression was influenced by genetic heritability (46%) with cis-acting factors accounting for 19% and trans-acting factors at 27%.
    Matched MeSH terms: Microsatellite Repeats/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links