OBJECTIVE: This study was sought to assess the level of cognitive functions and linked with blood oxidative status during normal aging in rats.
METHODS: A longitudinal study using male Sprague Dawley rats was performed starting from the age of 14 months old to 27 months old. Cognitive functions tests such as open field, Morris water maze and object recognition were determined at the age of 14, 18, 23, and 27 months old and were compared with group 3 months old. Blood was collected from the orbital venous sinus and oxidative status was determined by measuring the level of DNA damage, lipid peroxidation, protein oxidation and antioxidant enzymes activity.
RESULTS: Aged rats showed declining exploratory behavior and increased in the level of anxiety as compared to the young rats. The level of DNA damage increased with increasing age. Interestingly, our study found that both levels of malondialdehyde and plasma carbonyl content decreased with age. In addition, the level of superoxide dismutase activity was significantly decreased with age whereas catalase activity was significantly increased from 18 months of age. However, no significant difference was found in glutathione peroxidase activity among all age groups.
CONCLUSION: The progressions of cognitive impairment in normal aging rats are linked to the increment in the level of DNA damage.
Methods: The study was conducted in the Department of Medical Microbiology and Parasitology, University Putra Malaysia in 2014-2017. Saline extract protein from the infective larvae of S. ratti was used to immunize BALB/c mice and subsequent fusion of the B-cells with myeloma cells (SP2/0) using 50% PEG. The hybridomas were cultured in HAT medium and cloned by limiting dilutions. Positive hybrids were screened by indirect ELISA. The ascites fluid from the antibody-secreting hybridoma was purified and the MAb was characterized by western-blots and evaluated in sandwich ELISA for reactivity against the homologous and heterologous antigens.
Results: An IgG1 that recognizes a 30 and 34 kDa protein bands was obtained. The MAb was recognized by all S. ratti-related antigens and cross-reacted with only Toxocara canis antigens in both assays. The minimum antigen detection limit was found to be 5 ng/ml. All antibody-positive rat and dog sera evaluated have shown antigen-positive reactions in Sandwich-ELISA.
Conclusion: The MAb produced, was able to detect antigens in strongyloidiasis and toxocariasis in animal models and may also be useful for the serological detection of active strongyloidiasis and visceral toxocariasis in human sera.
Methods: Proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabolomics approach was used to investigate fecal and serum metabolome of rat model of IBS-D with and without HPM treatment.
Results: The current results showed that IBS-induced metabolic alterations in fecal and serum sample include higher level of threonine and UDP-glucose together with lower levels of aspartate, ornithine, leucine, isoleucine, proline, 2-hydroxy butyrate, valine, lactate, ethanol, arginine, 2-oxoisovalerate and bile acids. These altered metabolites potentially involve in impaired gut secretory immune system and intestinal inflammation, malabsorption of nutrients, and disordered metabolism of bile acids. Notably, the HPM treatment was found able to normalize the Bristol stool forms scale scores, fecal water content, plasma endotoxin level, and a number of IBS-induced metabolic changes.
Conclusions: These findings may provide useful insight into the molecular basis of IBS and mechanism of the HPM intervention.