Displaying publications 221 - 236 of 236 in total

Abstract:
Sort:
  1. Hooper C, Debnath PP, Biswas S, van Aerle R, Bateman KS, Basak SK, et al.
    Viruses, 2020 10 02;12(10).
    PMID: 33023199 DOI: 10.3390/v12101120
    Mass mortalities of the larval stage of the giant freshwater prawn, Macrobrachium rosenbergii, have been occurring in Bangladesh since 2011. Mortalities can reach 100% and have resulted in an 80% decline in the number of hatcheries actively producing M. rosenbergii. To investigate a causative agent for the mortalities, a disease challenge was carried out using infected material from a hatchery experiencing mortalities. Moribund larvae from the challenge were prepared for metatranscriptomic sequencing. De novo virus assembly revealed a 29 kb single‑stranded positive-sense RNA virus with similarities in key protein motif sequences to yellow head virus (YHV), an RNA virus that causes mass mortalities in marine shrimp aquaculture, and other viruses in the Nidovirales order. Primers were designed against the novel virus and used to screen cDNA from larvae sampled from hatcheries in the South of Bangladesh from two consecutive years. Larvae from all hatcheries screened from both years were positive by PCR for the novel virus, including larvae from a hatchery that at the point of sampling appeared healthy, but later experienced mortalities. These screens suggest that the virus is widespread in M. rosenbergii hatchery culture in southern Bangladesh, and that early detection of the virus can be achieved by PCR. The hypothesised protein motifs of Macrobrachium rosenbergii golda virus (MrGV) suggest that it is likely to be a new species within the Nidovirales order. Biosecurity measures should be taken in order to mitigate global spread through the movement of post-larvae within and between countries, which has previously been linked to other virus outbreaks in crustacean aquaculture.
    Matched MeSH terms: Aquaculture
  2. Lau NS, Zarkasi KZ, Md Sah ASR, Shu-Chien AC
    Microb Ecol, 2019 Jul;78(1):20-32.
    PMID: 30397794 DOI: 10.1007/s00248-018-1283-0
    Although freshwater biomes cover less than 1% of the Earth's surface, they have disproportionate ecological significances. Attempts to study the taxonomy and function of freshwater microbiota are currently limited to samples collected from temperate lakes. In this study, we investigated samples from the photic and aphotic of an aquaculture site (disturbed) of Temengor Lake, a tropical lake in comparison with the undisturbed site of the lake using 16S rRNA amplicon and shotgun metagenomic approaches. Vertical changes in bacterial community composition and function of the Temengor Lake metagenomes were observed. The photic water layer of Temengor Lake was dominated by typical freshwater assemblages consisting of Proteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, and Cyanobacteria lineages. On the other hand, the aphotic water featured in addition to Proteobacteria, Bacteroidetes, Verrucomicrobia, and two more abundant bacterial phyla that are typically ubiquitous in anoxic habitats (Chloroflexi and Firmicutes). The aphotic zone of Temengor Lake exhibited genetic potential for nitrogen and sulfur metabolisms for which terminal electron acceptors other than oxygen are used in the reactions. The aphotic water of the disturbed site also showed an overrepresentation of genes associated with the metabolism of carbohydrates, likely driven by the enrichment of nutrient resulting from aquaculture activities at the site. The results presented in this study can serve as a basis for understanding the structure and functional capacity of the microbial communities in the photic and aphotic zones/water layers of tropical man-made lakes.
    Matched MeSH terms: Aquaculture
  3. Lal TM, Sano M, Ransangan J
    J Basic Microbiol, 2016 Aug;56(8):872-88.
    PMID: 26960780 DOI: 10.1002/jobm.201500611
    Vibrio parahaemolyticus has long been known pathogenic to shrimp but only recently it is also reported pathogenic to tropical cultured marine finfish. Traditionally, bacterial diseases in aquaculture are often treated using synthetic antibiotics but concern due to side effects of these chemicals is elevating hence, new control strategies which are both environmental and consumer friendly, are urgently needed. One promising control strategy is the bacteriophage therapy. In this study, we report the isolation and characterization of a novel vibriophage (VpKK5), belonging to the family Siphoviridae that was specific and capable of complete lysing the fish pathogenic strain of V. parahaemolyticus. The VpKK5 exhibited short eclipse and latent periods of 24 and 36 min, respectively, but with a large burst size of 180 pfu/cell. The genome analysis revealed that the VpKK5 is a novel bacteriophage with the estimated genome size of 56,637 bp and has 53.1% G + C content. The vibriophage has about 80 predicted open reading frames consisted of 37 complete coding sequences which did not match to any protein databases. The analysis also found no lysogeny and virulence genes in the genome of VpKK5. With such genome features, we suspected the vibriophage is novel and could be explored for phage therapy against fish pathogenic strains of V. parahaemolyticus in the near future.
    Matched MeSH terms: Aquaculture
  4. Mohamad A, Zamri-Saad M, Amal MNA, Al-Saari N, Monir MS, Chin YK, et al.
    Vaccines (Basel), 2021 Apr 10;9(4).
    PMID: 33920311 DOI: 10.3390/vaccines9040368
    Multiple infections of several bacterial species are often observed under natural farm conditions. The infections would cause a much more significant loss compared to a single infectious agent. Vaccination is an essential strategy to prevent diseases in aquaculture, and oral vaccination has been proposed as a promising technique since it requires no handling of the fish and is easy to perform. This research attempts to develop and evaluate a potential feed-based polyvalent vaccine that can be used to treat multiple infections by Vibrios spp., Streptococcus agalactiae, and Aeromonas hydrophila, simultaneously. The oral polyvalent vaccine was prepared by mixing formalin-killed vaccine of V. harveyi, S. agalactiae, and A. hydrophila strains with commercial feed pellet, and palm oil as an adjuvant was added to improve their antigenicity. Thereafter, a vaccinated feed pellet was tested for feed quality analysis in terms of feed stability in water, proximate nutrient analysis, and palatability, safety, and growth performance using Asian seabass, Lates calcarifer as a fish host model. For immune response analysis, a total of 300 Asian seabass juveniles (15.8 ± 2.6 g) were divided into two groups in triplicate. Fish of group 1 were not vaccinated, while group 2 was vaccinated with the feed-based polyvalent vaccine. Vaccinations were carried out on days 0 and 14 with oral administration of the feed containing the bacterin at 5% body weight. Samples of serum for antibody and lysozyme study and the spleen and gut for gene expression analysis were collected at 7-day intervals for 6 weeks. Its efficacy in protecting fish was evaluated in aquarium challenge. Following vaccination by the polyvalent feed-based vaccine, IgM antibody levels showed a significant (p < 0.05) increase in serum against Vibrio harveyi, Aeromonas hydrophila, and Streptococcus agalactiae and reached the peak at week 3, 5, and 6, respectively. The high-stimulated antibody in the serum remained significantly higher than the control (p < 0.05) at the end of the 6 weeks vaccination trial. Not only that, but the serum lysozyme level was also increased significantly at week 4 (p < 0.05) as compared to the control treatment. The immune-related gene, dendritic cells, C3, Chemokine ligand 4 (CCL4), and major histocompatibility complex class I (MHC I) showed significantly higher expression (p < 0.05) after the fish were vaccinated with the oral vaccine. In the aquarium challenge, the vaccine provided a relative percentage survival of 75 ± 7.1%, 80 ± 0.0%, and 80 ± 0.0% after challenge with V. harveyi, A. hydrophila, and S. agalactiae, respectively. Combining our results demonstrate that the feed-based polyvalent vaccine could elicit significant innate and adaptive immunological responses, and this offers an opportunity for a comprehensive immunization against vibriosis, streptococcosis, and motile aeromonad septicemia in Asian seabass, Lates calcarifer. Nevertheless, this newly developed feed-based polyvalent vaccination can be a promising technique for effective and large-scale fish immunization in the aquaculture industry shortly.
    Matched MeSH terms: Aquaculture
  5. Kua BC, Noraziah MR, Nik Rahimah AR
    Trop Biomed, 2012 Sep;29(3):443-50.
    PMID: 23018508 MyJurnal
    Twenty Asian sea bass Lates calcarifer from a floating cage in Bt. Tambun, Penang were examined for the presence of parasitic gill copepod, Lernanthropus latis. The prevalence of L. latis was 100% with the intensity of infection ranging from 1 to 18 parasites per host or 3.75 of mean intensity. Female parasites having oblong cephalothorax and egg-strings were seen mainly on the entire gill of examined Asian sea bass. The infected gill of Asian sea bass was pale and had eccessive mucus production. Under light and scanning electron microscopies (SEM), L. latis was seen grasping or holding tightly to the gill filament using their antenna, maxilla and maxilliped. These structures are characteristically prehensile and uncinate for the parasite to attach onto the host tissue. The damage was clearly seen under SEM as the hooked end of the antenna was embedded into the gill filament. The parasite also has the mandible which is styliform with eight teeth on the inner margin. The pathological effects such as erosion, haemorrhages, hyperplasia and necrosis along the secondary lamellae of gill filaments were seen and more severe at the attachment site. The combined actions of the antenna, maxilla and maxilliped together with the mandible resulted in extensive damage as L. latis attached and fed on the host tissues.
    Matched MeSH terms: Aquaculture
  6. Yu LH, Teh CSJ, Yap KP, Ung EH, Thong KL
    Infect Genet Evol, 2020 09;83:104347.
    PMID: 32360538 DOI: 10.1016/j.meegid.2020.104347
    Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp disease of economic importance which causes mass mortality of cultivated penaeid shrimps in Southeast Asian countries, Mexico and South America. This disease was originally caused by Vibrio parahaemolyticus (VPAHPND) which is reported to harbour a transferable plasmid carrying the virulent PirAB-like toxin genes (pirABvp). However, little is known about the pathogenicity of VPAHPND. To extend our understanding, comparative genomic analyses was performed in this study to identify the genetic differences and to understand the phylogenetic relationship of VPAHPND strains. Seven Vibrio parahaemolyticus strains (five VPAHPND strains and two non-VPAHPND strains) were sequenced and 31 draft genomes of V. parahaemolyticus were retrieved from NCBI database and incorporated into the genomic comparison to elucidate their genomic diversity. The study showed that the genome sizes of the VPAHPND strains were approximately 5 Mbp. Ten sequence types (STs) were identified among the VPAHPND strains using in silico-Multilocus Sequence Typing analysis (MLST) and ST 970 was the predominant ST. Phylogenetic analysis based on MLST and single nucleotide polymorphisms (SNP) showed that the VPAHPND strains were genetically diverse. Based on the comparative genomic analysis, several functional proteins were identified from diiferent categories associated with virulence-related proteins, secretory proteins, conserved domain proteins, transporter proteins, and phage proteins. The CRISPR analysis showed that VPAHPND strains contained less number of CRISPRs elements than non-VPAHPND strains while six prophages regions were identified in the genomes, suggested the lack of CRISPR might promote prophage insertion. The genomic information in this study provide improved understanding of the virulence of these VPAHPND strains.
    Matched MeSH terms: Aquaculture
  7. Senapin S, Dong HT, Meemetta W, Gangnonngiw W, Sangsuriya P, Vanichviriyakit R, et al.
    J Fish Dis, 2019 Jan;42(1):119-127.
    PMID: 30397913 DOI: 10.1111/jfd.12915
    In Southeast Asia, a new disease called scale drop disease (SDD) caused by a novel Megalocytivirus (SDDV) has emerged in farmed Asian sea bass (Lates calcarifer) in Singapore, Malaysia and Indonesia. We received samples from an Eastern Thai province that also showed gross signs of SDD (loss of scales). Clinical samples of 0.2-1.1 kg L. calcarifer collected between 2016 and 2018 were examined for evidence of SDDV infection. Histopathology was similar to that in the first report of SDDV from Singapore including necrosis, inflammation and nuclear pyknosis and karyorrhexis in the multiple organs. Intracytoplasmic inclusion bodies were also observed in the muscle tissue. In a density-gradient fraction from muscle extracts, TEM revealed enveloped, hexagonal megalocytiviral-like particles (~100-180 nm). By PCR using primers derived from the Singaporean SDDV genome sequence, four different genes were amplified and sequenced from the Thai isolate revealing 98.7%-99.9% identity between the two isolates. Since viral inclusions were rarely observed, clinical signs and histopathology could not be used to easily distinguish between SDD caused by bacteria or SDDV. We therefore recommend that PCR screening be used to monitor broodstock, fry and grow-out fish to estimate the current impact of SDDV in Southeast Asia and to prevent its spread.
    Matched MeSH terms: Aquaculture
  8. Ishak SD, Kamarudin MS, Ramezani-Fard E, Saad CR, Yusof YA
    J Environ Biol, 2016 07;37(4 Spec No):755-64.
    PMID: 28779735
    We investigated the effects of four iso-nitrogenous (40% crude protein) and iso-caloric (17.6 kJ g(-1)) diets with different dietary carbohydrate levels (15%, 20%, 25% and 30%) on the growth performance, feed utilization efficiency, body composition and liver histology of Malaysian mahseer (Tor tambroides) fingerlings in a 10-week feeding trial. Fish (initial weight of 0.8?0.1 g; initial total length 4.2?0.1 cm) were fed twice daily at 4% body mass. Dietary carbohydrate level had significant effects (P<0.05) on weight gain, SGR (specific growth rate), FCR (feed conversion rate), PER (protein efficiency rate), survival percentage and all nutrient retention values (PRV, LRV, CRV, ERV). Protein, carbohydrate and gross energy composition of the fish body were also significantly differed (P<0.05) among treatments. Liver histology showed mild hepatic steatosis and hypertrophy for fishes receiving a higher dietary carbohydrate inclusion. In general, treatments with 20% and 25% dietary carbohydrate levels produced better growth results compared to the rest of the treatments. Using a second-order polynomial regression analysis model, the optimal dietary carbohydrate level of 23.4% was estimated for mahseer fingerlings. ?
    Matched MeSH terms: Aquaculture
  9. Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SE, et al.
    Mar Drugs, 2021 Apr 27;19(5).
    PMID: 33925365 DOI: 10.3390/md19050246
    Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
    Matched MeSH terms: Aquaculture
  10. Zokaeifar H, Balcázar JL, Kamarudin MS, Sijam K, Arshad A, Saad CR
    J Antibiot (Tokyo), 2012 Jun;65(6):289-94.
    PMID: 22491136 DOI: 10.1038/ja.2012.17
    In this study, potential probiotic strains were isolated from fermented pickles based on antagonistic activity against two shrimp pathogens (Vibrio harveyi and Vibrio parahaemolyticus). Two strains L10 and G1 were identified by biochemical tests, followed by16S ribosomal RNA gene sequence analysis as Bacillus subtilis, and characterized by PCR amplification of repetitive bacterial DNA elements (Rep-PCR). Subsequently, B. subtilis L10 and G1 strains were tested for antibacterial activity under different physical conditions, including culture medium, salinity, pH and temperature using the agar well diffusion assay. Among the different culture media, LB broth was the most suitable medium for antibacterial production. Both strains showed the highest level of antibacterial activity against two pathogens at 30 °C and 1.0% NaCl. Under the pH conditions, strain G1 showed the greatest activity against V. harveyi at pH 7.3-8.0 and against V. parahaemolyticus at pH 6.0-8.0, whereas strain L10 showed the greatest activity against two pathogens at pH 7.3. The cell-free supernatants of both strains were treated with four different enzymes in order to characterize the antibacterial substances against V. harveyi. The result showed considerable reduction of antibacterial activity for both strains, indicating the proteinaceous nature of the antibacterial substances. A wide range of tolerance to NaCl, pH and temperature was also recorded for both strains. In addition, both strains showed no virulence effect in juvenile shrimp Litopenaeus vannamei. On the basis of these results and safety of strains to L. vannamei, they may be considered for future challenge experiments in shrimp as a very promising alternative to the use of antibiotics.
    Matched MeSH terms: Aquaculture
  11. Ransangan J, Manin BO
    Vet Microbiol, 2010 Sep 28;145(1-2):153-7.
    PMID: 20427132 DOI: 10.1016/j.vetmic.2010.03.016
    Culture of Asian seabass, Lates calcarifer (Bloch) is a popular aquaculture activity in Malaysia. This fish is in high demand and fetches a good price in the local market. The seed for this fish is commercially produced by induced spawning in hatcheries. However, the seed supply is affected by frequent mass mortality of larvae aged between 15 and 60 dph. The clinical signs shown by the affected larvae include lethargy, loss of appetite, uncoordinated swimming, unusual spiral movement pattern and dark coloration. Histological examination of brain and eye of the affected specimens revealed extensive cell vacuolation in larvae aged 15-25 dph. Partial nucleotide sequence of the nervous necrosis virus coat protein gene of the affected larvae showed 94.0-96.1% homology to the nucleotide sequences of coat protein gene from nervous necrosis virus isolated from other countries in the Southeast Asia and Australia. This study provides scientific evidence based on molecular technique that many episodes of mass mortality in seabass larvae in Sabah is associated with the viral nervous necrosis. Because no effective treatment has been reported for this infection, stringent biosecurity measures must be adopted for exclusion of the pathogen from the culture system.
    Matched MeSH terms: Aquaculture
  12. Yambot AV, Song YL, Sung HH
    Dis Aquat Organ, 2003 Mar 31;54(2):147-56.
    PMID: 12747640
    The ciliated protozoan parasite Cryptocaryon irritans infecting marine fishes in Taiwan is described. Developmental characteristics and sequences of the ribosomal DNA regions such as part of 18 S, the entire first internal transcribed spacer, and part of 5.8 S of various Taiwan isolates of C. irritans were investigated. A total of 5 isolates was obtained from different fish-host species and localities, the majority from cultured fish species. C. irritans from Taiwan is able to shift its developmental characteristics, i.e. from non-adherent to adherent tomonts, from individualistic to aggregate-forming tomonts, from infection of the gills only to infection of the gills and body. Thus, it is not possible to classify strains of C. irritans on the basis of these parameters. Premature tomonts that developed from dead fishes were able to produce theronts that could infect fish host. Isolates from Pingtung and the USA had identical nucleotide sequences while an isolate from Malaysia was identical to an Israel isolate. Percentage variation among pairs of Taiwan isolates showed a higher degree of variation than isolate sequences listed in GenBank. Sequence analysis revealed highly aberrant isolates in Taiwan, and a phylogenetic tree distinguished a marine and a low-salinity variant. C. irritans from marine fishes in Taiwan, therefore, display some characteristics not previously reported. Since manipulation of salinity in brackishwater ponds and marine cage sites is not feasible, there is a need to develop new strategies for the control and prevention of cryptocaryoniasis.
    Matched MeSH terms: Aquaculture
  13. Son R, Rusul G, Sahilah AM, Zainuri A, Raha AR, Salmah I
    Lett Appl Microbiol, 1997 Jun;24(6):479-82.
    PMID: 9203404
    Strains of Aeromonas hydrophila isolates from skin lesions of the common freshwater fish, Telapia mossambica, were screened for the presence of plasmid DNA by agarose gel electrophoresis and tested for susceptibility to 10 antimicrobial agents. Of the 21 fish isolates examined, all were resistant to ampicillin and sensitive to gentamycin. Most isolates were resistant to streptomycin (57%), tetracycline (48%) and erythromycin (43%). While seven of 21 isolates harboured plasmids, with sizes ranging from 3 to 63.4 kilobase pair (kb), it was only possible to associate the presence of a plasmid with antibiotic resistance (ampicillin and tetracycline) in strain AH11. Both the plasmid and the associated antimicrobial resistance could be transferred to an Escherichia coli recipient by single-step conjugation at a frequency of 4.3 x 10(-3) transconjugants per donor cell.
    Matched MeSH terms: Aquaculture
  14. Borkhanuddin MH, Cech G, Molnár K, Shaharom-Harrison F, Khoa TND, Samshuri MA, et al.
    Parasitol Res, 2020 Jan;119(1):85-96.
    PMID: 31768684 DOI: 10.1007/s00436-019-06541-1
    Examination of 35 barramundi (Lates calcarifer) from aquaculture cages in Setiu Wetland, Malaysia, revealed a single fish infected with three Henneguya spp. (Cnidaria: Myxosporea). Characterization of the infections using tissue tropism, myxospore morphology and morphometry and 18S rDNA sequencing supported description of three new species: Henneguya setiuensis n. sp., Henneguya voronini n. sp. and H. calcarifer n. sp. Myxospores of all three species had typical Henneguya morphology, with two polar capsules in the plane of the suture, an oval spore body, smooth valve cell surfaces, and two caudal appendages. Spores were morphometrically similar, and many dimensions overlapped, but H. voronini n. sp. had shorter caudal appendages compared with H. calcarifer n. sp. and H. setiuensis n. sp. Gross tissue tropism distinguished the muscle parasite H. calcarifer n. sp. from gill parasites H. setiuensis n. sp. and H. voronini n. sp.; and these latter two species were further separable by fine-scale location of developing plasmodia, which were intra-lamellar for H. setiuensis n. sp. and basal to the filaments for H. voronini n. sp. small subunit ribosomal DNA sequences distinguished all three species: the two gill species H. setiuensis n. sp. and H voronini n. sp. were only 88% similar (over 1708 bp), whereas the muscle species H. calcarifer n. sp. was most similar to H. voronini n. sp. (98% over 1696 bp). None of the three novel species was more than 90% similar to any known myxosporean sequence in GenBank. Low infection prevalence of these myxosporeans and lack of obvious tissue pathology from developing plasmodia suggested none of these parasites are currently a problem for barramundi culture in Setiu Wetland; however additional surveys of fish, particularly at different times of the year, would be informative for better risk assessment.
    Matched MeSH terms: Aquaculture
  15. Liu W, Wang YT, Tian DS, Yin ZC, Kwang J
    Dis Aquat Organ, 2002 Apr 24;49(1):11-8.
    PMID: 12093036
    The vp28 gene encoding an envelope protein (28 kDa) of white spot syndrome virus (WSSV) was amplified from WSSV-infected tiger shrimp that originated from Malaysia. Recombinant VP28 protein (r-28) was expressed in Escherichia coli and used as an antigen for preparation of monoclonal antibodies (MAbs). Three murine MAbs (6F6, 6H4 and 9C10) that were screened by r-28 antigen-based enzyme-linked immunosorbent assay (ELISA) were also able to recognize viral VP28 protein as well as r-28 on Western blot. Three non-overlapping epitopes of VP28 protein were determined using the MAbs in competitive ELISA; thus, an antigen-capture ELISA (Ac-ELISA) was developed by virtue of these MAbs. Ac-ELISA can differentiate WSSV-infected shrimp from uninfected shrimp and was further confirmed by a polymerase chain reaction (PCR) and Western blot. Approximately 400 pg of purified WSSV sample and 20 pg of r-28 could be detected by Ac-ELISA, which is comparable in sensitivity to PCR assay but more sensitive than Western blot in the detection of purified virus. Hemolymph and tissue homogenate samples collected from a shrimp farm in Malaysia during December 2000 and July 2001 were also detected by Ac-ELISA and PCR with corroborating results.
    Matched MeSH terms: Aquaculture
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links