Methods: The genomes of 24 MTBC isolated from sputum and pus samples were sequenced. The phenotypic drug susceptibility testing (DST) of the isolates was determined for ten anti-TB drugs. Bioinformatic analysis comprising genome assembly and annotation and single-nucleotide polymorphism (SNP) analysis in genes associated with resistance to the ten anti-TB drugs were done on each sequenced genome.
Results: The draft assemblies covered an average of 97% of the expected genome size. Eleven isolates were aligned to the Indo-Oceanic lineage, eight were East-Asian lineage, three were East African-Indian lineage, and one was of Euro-American and Bovis lineages, respectively. Twelve of the 24 MTBC isolates were phenotypically MDR M. tuberculosis: one is polyresistance and another one is monoresistance. Twenty-six SNPs across nine genes associated with resistance toward ten anti-TB drugs were detected where some of the mutations were found in isolates that were previously reported as pan-susceptible using DST. A haplotype consisting of 65 variants was also found among the MTBC isolates with drug-resistance traits.
Conclusions: This study is the first effort done in Malaysia to utilize 24 genomes of the local clinical MTBC isolates. The high-resolution molecular epidemiological data obtained provide valuable insights into the mechanistic and epidemiological qualities of TB within the vicinity of Southeast Asia.
METHODS AND ANALYSIS: MERCURIAL is an ongoing multiyear prospective cohort study. Every year, for the next 5 years, a cohort of 1000 Hajj pilgrims was enrolled beginning in the 2016 Hajj pilgrimage season. Pre-Hajj and post-Hajj serum samples were obtained and serologically analysed for evidence of MERS-CoV seroconversion. Sociodemographic data, underlying medical conditions, symptoms experienced during Hajj pilgrimage, and exposure to camel and untreated camel products were recorded using structured pre-Hajj and post-Hajj questionnaires. The possible risk factors associated with the seroconversion data were analysed using univariate and multivariate logistic regression. The primary outcome of this study is to better enhance our understanding of the potential threat of MERS-CoV spreading through MG beyond the Middle East.
ETHICS AND DISSEMINATION: This study has obtained ethical approval from the Medical Research and Ethics Committee (MREC), Ministry of Health Malaysia. Results from the study will be submitted for publication in peer-reviewed journals and presented in conferences and scientific meetings.
TRIAL REGISTRATION NUMBER: NMRR-15-1640-25391.
MATERIALS AND METHODS: The clinic-based prospective evaluation included all suspected measles cases captured by routine measles surveillance at 34 purposely selected clinics in 15 health districts in Malaysia between September 2019 and June 2020, following day-long regional trainings on RDT use. Following informed consent, four specimens were collected from each suspected case, including those routinely collected for standard surveillance [serum for EIA and throat swabs for quantitative reverse transcriptase polymerase chain reaction (RT-qPCR)] together with capillary blood and oral fluid tested with RDTs during the study. RDT impact was evaluated by comparing the rapidity of measles public health response between the pre-RDT implementation (December 2018 to August 2019) and RDT implementation periods (September 2019 to June 2020). To assess knowledge, attitudes, and practices of RDT use, staff involved in the public health management of measles at the selected sites were surveyed.
RESULTS: Among the 436 suspect cases, agreement of direct visual readings of measles RDT devices between two health clinic staff was 99% for capillary blood (k = 0.94) and 97% for oral fluid (k = 0.90) specimens. Of the total, 45 (10%) were positive by measles IgM EIA (n = 44, including five also positive by RT-qPCR) or RT-qPCR only (n = 1), and 38 were positive by RDT (using either capillary blood or oral fluid). Using measles IgM EIA or RT-qPCR as reference, RDT sensitivity using capillary blood was 43% (95% CI: 30%-58%) and specificity was 98% (95% CI: 96%-99%); using oral fluid, sensitivity (26%, 95% CI: 15%-40%) and specificity (97%, 95% CI: 94%-98%) were lower. Nine months after training, RDT knowledge was high among staff involved with the public health management of measles (average quiz score of 80%) and was highest among those who received formal training (88%), followed by those trained during supervisory visits (83%). During the RDT implementation period, the number of days from case confirmation until initiation of public response decreased by about 5 days.
CONCLUSION: The measles IgM RDT shows >95% inter-reader agreement, high retention of RDT knowledge, and a more rapid public health response. However, despite ≥95% RDT specificity using capillary blood or oral fluid, RDT sensitivity was <45%. Higher-powered studies using highly specific IgM assays and systematic RT-qPCR for case confirmation are needed to establish the role of RDT in measles elimination settings.