Displaying publications 241 - 260 of 709 in total

Abstract:
Sort:
  1. Wan Ariffin WNSF, Zhang X, Nakhai MR, Rahim HA, Ahmad RB
    Sensors (Basel), 2021 Mar 25;21(7).
    PMID: 33806215 DOI: 10.3390/s21072308
    Constantly changing electricity demand has made variability and uncertainty inherent characteristics of both electric generation and cellular communication systems. This paper develops an online learning algorithm as a prescheduling mechanism to manage the variability and uncertainty to maintain cost-aware and reliable operation in cloud radio access networks (Cloud-RANs). The proposed algorithm employs a combinatorial multi-armed bandit model and minimizes the long-term energy cost at remote radio heads. The algorithm preschedules a set of cost-efficient energy packages to be purchased from an ancillary energy market for the future time slots by learning both from cooperative energy trading at previous time slots and by exploring new energy scheduling strategies at the current time slot. The simulation results confirm a significant performance gain of the proposed scheme in controlling the available power budgets and minimizing the overall energy cost compared with recently proposed approaches for real-time energy resources and energy trading in Cloud-RANs.
  2. Alahnomi RA, Zakaria Z, Yussof ZM, Althuwayb AA, Alhegazi A, Alsariera H, et al.
    Sensors (Basel), 2021 Mar 24;21(7).
    PMID: 33804904 DOI: 10.3390/s21072267
    Recent developments in the field of microwave planar sensors have led to a renewed interest in industrial, chemical, biological and medical applications that are capable of performing real-time and non-invasive measurement of material properties. Among the plausible advantages of microwave planar sensors is that they have a compact size, a low cost and the ease of fabrication and integration compared to prevailing sensors. However, some of their main drawbacks can be considered that restrict their usage and limit the range of applications such as their sensitivity and selectivity. The development of high-sensitivity microwave planar sensors is required for highly accurate complex permittivity measurements to monitor the small variations among different material samples. Therefore, the purpose of this paper is to review recent research on the development of microwave planar sensors and further challenges of their sensitivity and selectivity. Furthermore, the techniques of the complex permittivity extraction (real and imaginary parts) are discussed based on the different approaches of mathematical models. The outcomes of this review may facilitate improvements of and an alternative solution for the enhancement of microwave planar sensors' normalized sensitivity for material characterization, especially in biochemical and beverage industry applications.
  3. Azmi N, Kamarudin LM, Zakaria A, Ndzi DL, Rahiman MHF, Zakaria SMMS, et al.
    Sensors (Basel), 2021 Mar 08;21(5).
    PMID: 33800174 DOI: 10.3390/s21051875
    Seasonal crops require reliable storage conditions to protect the yield once harvested. For long term storage, controlling the moisture content level in grains is challenging because existing moisture measuring techniques are time-consuming and laborious as measurements are carried out manually. The measurements are carried out using a sample and moisture may be unevenly distributed inside the silo/bin. Numerous studies have been conducted to measure the moisture content in grains utilising dielectric properties. To the best of authors' knowledge, the utilisation of low-cost wireless technology operating in the 2.4 GHz and 915 MHz ISM bands such as Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) have not been widely investigated. This study focuses on the characterisation of 2.4 GHz Radio Frequency (RF) transceivers using ZigBee Standard and 868 to 915 MHz UHF RFID transceiver for moisture content classification and prediction using Artificial Neural Network (ANN) models. The Received Signal Strength Indicator (RSSI) from the wireless transceivers is used for moisture content prediction in rice. Four samples (2 kg of rice each) were conditioned to 10%, 15%, 20%, and 25% moisture contents. The RSSI from both systems were obtained and processed. The processed data is used as input to different ANNs models such as Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest, and Multi-layer Perceptron (MLP). The results show that the Random Forest method with one input feature (RSSI_WSN) provides the highest accuracy of 87% compared to the other four models. All models show more than 98% accuracy when two input features (RSSI_WSN and RSSI_TAG2) are used. Hence, Random Forest is a reliable model that can be used to predict the moisture content level in rice as it gives a high accuracy even when only one input feature is used.
  4. Rani R, Kumar S, Kaiwartya O, Khasawneh AM, Lloret J, Al-Khasawneh MA, et al.
    Sensors (Basel), 2021 Mar 08;21(5).
    PMID: 33800227 DOI: 10.3390/s21051883
    Postquantum cryptography for elevating security against attacks by quantum computers in the Internet of Everything (IoE) is still in its infancy. Most postquantum based cryptosystems have longer keys and signature sizes and require more computations that span several orders of magnitude in energy consumption and computation time, hence the sizes of the keys and signature are considered as another aspect of security by green design. To address these issues, the security solutions should migrate to the advanced and potent methods for protection against quantum attacks and offer energy efficient and faster cryptocomputations. In this context, a novel security framework Lightweight Postquantum ID-based Signature (LPQS) for secure communication in the IoE environment is presented. The proposed LPQS framework incorporates a supersingular isogeny curve to present a digital signature with small key sizes which is quantum-resistant. To reduce the size of the keys, compressed curves are used and the validation of the signature depends on the commutative property of the curves. The unforgeability of LPQS under an adaptively chosen message attack is proved. Security analysis and the experimental validation of LPQS are performed under a realistic software simulation environment to assess its lightweight performance considering embedded nodes. It is evident that the size of keys and the signature of LPQS is smaller than that of existing signature-based postquantum security techniques for IoE. It is robust in the postquantum environment and efficient in terms of energy and computations.
  5. Al-Khalqi EM, Abdul Hamid MA, Al-Hardan NH, Keng LK
    Sensors (Basel), 2021 Mar 17;21(6).
    PMID: 33802968 DOI: 10.3390/s21062110
    For highly sensitive pH sensing, an electrolyte insulator semiconductor (EIS) device, based on ZnO nanorod-sensing membrane layers doped with magnesium, was proposed. ZnO nanorod samples prepared via a hydrothermal process with different Mg molar ratios (0-5%) were characterized to explore the impact of magnesium content on the structural and optical characteristics and sensing performance by X-ray diffraction analysis (XRD), atomic force microscopy (AFM), and photoluminescence (PL). The results indicated that the ZnO nanorods doped with 3% Mg had a high hydrogen ion sensitivity (83.77 mV/pH), linearity (96.06%), hysteresis (3 mV), and drift (0.218 mV/h) due to the improved crystalline quality and the surface hydroxyl group role of ZnO. In addition, the detection characteristics varied with the doping concentration and were suitable for developing biomedical detection applications with different detection elements.
  6. Abdulhussain SH, Mahmmod BM, Naser MA, Alsabah MQ, Ali R, Al-Haddad SAR
    Sensors (Basel), 2021 Mar 12;21(6).
    PMID: 33808986 DOI: 10.3390/s21061999
    Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential application in more realistic noise environments. Therefore, finding a feasible and accurate handwritten numeral recognition method that is accurate in the more practical noisy environment is crucial. To this end, this paper proposes a new scheme for handwritten numeral recognition using Hybrid orthogonal polynomials. Gradient and smoothed features are extracted using the hybrid orthogonal polynomial. To reduce the complexity of feature extraction, the embedded image kernel technique has been adopted. In addition, support vector machine is used to classify the extracted features for the different numerals. The proposed scheme is evaluated under three different numeral recognition datasets: Roman, Arabic, and Devanagari. We compare the accuracy of the proposed numeral recognition method with the accuracy achieved by the state-of-the-art recognition methods. In addition, we compare the proposed method with the most updated method of a convolutional neural network. The results show that the proposed method achieves almost the highest recognition accuracy in comparison with the existing recognition methods in all the scenarios considered. Importantly, the results demonstrate that the proposed method is robust against the noise distortion and outperforms the convolutional neural network considerably, which signifies the feasibility and the effectiveness of the proposed approach in comparison to the state-of-the-art recognition methods under both clean noise and more realistic noise environments.
  7. Abushagur AAG, Arsad N, Bakar AAA
    Sensors (Basel), 2021 Mar 12;21(6).
    PMID: 33809028 DOI: 10.3390/s21062002
    This work investigates a new interrogation method of a fiber Bragg grating (FBG) sensor based on longer and shorter wavelengths to distinguish between transversal forces and temperature variations. Calibration experiments were carried out to examine the sensor's repeatability in response to the transversal forces and temperature changes. An automated calibration system was developed for the sensor's characterization, calibration, and repeatability testing. Experimental results showed that the FBG sensor can provide sensor repeatability of 13.21 pm and 17.015 pm for longer and shorter wavelengths, respectively. The obtained calibration coefficients expressed in the linear model using the matrix enabled the sensor to provide accurate predictions for both measurements. Analysis of the calibration and experiment results implied improvements for future work. Overall, the new interrogation method demonstrated the potential to employ the FBG sensing technique where discrimination between two/three measurands is needed.
  8. Jérôme FK, Evariste WT, Bernard EZ, Crespo ML, Cicuttin A, Reaz MBI, et al.
    Sensors (Basel), 2021 Mar 04;21(5).
    PMID: 33806350 DOI: 10.3390/s21051760
    The front-end electronics (FEE) of the Compact Muon Solenoid (CMS) is needed very low power consumption and higher readout bandwidth to match the low power requirement of its Short Strip application-specific integrated circuits (ASIC) (SSA) and to handle a large number of pileup events in the High-Luminosity Large Hadron Collider (LHC). A low-noise, wide bandwidth, and ultra-low power FEE for the pixel-strip sensor of the CMS has been designed and simulated in a 0.35 µm Complementary Metal Oxide Semiconductor (CMOS) process. The design comprises a Charge Sensitive Amplifier (CSA) and a fast Capacitor-Resistor-Resistor-Capacitor (CR-RC) pulse shaper (PS). A compact structure of the CSA circuit has been analyzed and designed for high throughput purposes. Analytical calculations were performed to achieve at least 998 MHz gain bandwidth, and then overcome pileup issue in the High-Luminosity LHC. The spice simulations prove that the circuit can achieve 88 dB dc-gain while exhibiting up to 1 GHz gain-bandwidth product (GBP). The stability of the design was guaranteed with an 82-degree phase margin while 214 ns optimal shaping time was extracted for low-power purposes. The robustness of the design against radiations was performed and the amplitude resolution of the proposed front-end was controlled at 1.87% FWHM (full width half maximum). The circuit has been designed to handle up to 280 fC input charge pulses with 2 pF maximum sensor capacitance. In good agreement with the analytical calculations, simulations outcomes were validated by post-layout simulations results, which provided a baseline gain of 546.56 mV/MeV and 920.66 mV/MeV, respectively, for the CSA and the shaping module while the ENC (Equivalent Noise Charge) of the device was controlled at 37.6 e- at 0 pF with a noise slope of 16.32 e-/pF. Moreover, the proposed circuit dissipates very low power which is only 8.72 µW from a 3.3 V supply and the compact layout occupied just 0.0205 mm2 die area.
  9. Liu Y, Gan Y, Song Y, Liu J
    Sensors (Basel), 2021 Mar 13;21(6).
    PMID: 33805702 DOI: 10.3390/s21062037
    Contemporarily, almost all the global IT giants have aimed at the smart home industry and made an active strategic business layout. As the early-stage and entry-level product of the voice-enabled smart home industry, the smart speakers have been going through rapid development and rising fierce market competition globally in recent years. China, one of the most populous and largest markets in the world, has tremendous business potential in the smart home industry. The market sales of smart speakers in China have gone through rapid growth in the past three years. However, the market penetration rate of related smart home devices and equipment still stays extremely low and far from mass adoption. Moreover, the market sales of smart speakers have also entered a significant slowdown and adjustment period since 2020. Chinese consumers have moved from early impulsive consumption to a rational consumption phase about this early-stage smart home product. Trust in the marketing field is considered an indispensable component of all business transactions, which plays a crucial role in adopting new technologies. This study explores the influencing factors of Chinese users' perceived trust in the voice-enabled smart home systems, uses structural equation modeling (SEM) to analyze the interaction mechanism between different variables, and establishes a perceived trust model through 475 valid samples. The model includes six variables: system quality, familiarity, subjective norm, technology optimism, perceived enjoyment, and perceived trust. The result shows that system quality is the essential influence factor that impacts all other variables and could significantly affect the perceived trust. Perceived enjoyment is the most direct influence variable affected by system quality, subjective norm, and technology optimism, and it positively affects the perceived trust in the end. The subjective norm is one of the most distinguishing variables for Chinese users, since China has a collectivist consumption culture. People always expect their behavior to meet social expectations and standards to avoid criticism and acquire social integration. Therefore, policy guidance, authoritative opinions, and people with important reference roles will significantly affect consumers' perceived trust and purchase intention. Familiarity and technology optimism are important influential factors that will have an indirect impact on the perceived trust. The related results of this study can help designers, practitioners, and researchers of the smart home industry produce products and services with higher perceived trust to improve consumers' adoption and acceptance so that the market penetration rate of related products and enterprises could be increased, and the maturity and development of the voice-enabled smart home industry could be promoted.
  10. Ba Wazir AS, Karim HA, Abdullah MHL, AlDahoul N, Mansor S, Fauzi MFA, et al.
    Sensors (Basel), 2021 Jan 21;21(3).
    PMID: 33494254 DOI: 10.3390/s21030710
    Given the excessive foul language identified in audio and video files and the detrimental consequences to an individual's character and behaviour, content censorship is crucial to filter profanities from young viewers with higher exposure to uncensored content. Although manual detection and censorship were implemented, the methods proved tedious. Inevitably, misidentifications involving foul language owing to human weariness and the low performance in human visual systems concerning long screening time occurred. As such, this paper proposed an intelligent system for foul language censorship through a mechanized and strong detection method using advanced deep Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) through Long Short-Term Memory (LSTM) cells. Data on foul language were collected, annotated, augmented, and analysed for the development and evaluation of both CNN and RNN configurations. Hence, the results indicated the feasibility of the suggested systems by reporting a high volume of curse word identifications with only 2.53% to 5.92% of False Negative Rate (FNR). The proposed system outperformed state-of-the-art pre-trained neural networks on the novel foul language dataset and proved to reduce the computational cost with minimal trainable parameters.
  11. Khasawneh AM, Kaiwartya O, Lloret J, Abuaddous HY, Abualigah L, Shinwan MA, et al.
    Sensors (Basel), 2020 Dec 18;20(24).
    PMID: 33353003 DOI: 10.3390/s20247278
    In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.
  12. Iqbal A, Jiat Tiang J, Kin Wong S, Alibakhshikenari M, Falcone F, Limiti E
    Sensors (Basel), 2020 Dec 19;20(24).
    PMID: 33352800 DOI: 10.3390/s20247320
    This article presents the detailed theoretical, simulation, and experimental analysis of a half-mode substrate integrated waveguide (HMSIW)-based multimode wideband filter. A third-order, semicircular HMSIW filter is developed in this paper. A semicircular HMSIW cavity resonator is adopted to achieve wide band characteristics. A U-shaped slot (acts as a λ/4 stub) in the center of a semicircular HMSIW cavity resonator and L-shaped open-circuited stubs are used to improve the out-of-band response by generating multiple transmission zeros (TZs) in the stop-band region of the filter. The TZs on either side of the passband can be controlled by adjusting dimensions of a U-shaped slot and L-shaped open-circuited stubs. The proposed filter covers a wide fractional bandwidth, has a lower insertion loss value, and has multiple TZs (which improves the selectivity). The simulated response of filter agrees well with the measured data. The proposed HMSIW bandpass filter can be integrated with any planar wideband communication system circuit, thanks to its planar structure.
  13. Mathai A, Guo N, Liu D, Wang X
    Sensors (Basel), 2020 Jul 29;20(15).
    PMID: 32751165 DOI: 10.3390/s20154211
    Transparent object detection and reconstruction are significant, due to their practical applications. The appearance and characteristics of light in these objects make reconstruction methods tailored for Lambertian surfaces fail disgracefully. In this paper, we introduce a fixed multi-viewpoint approach to ascertain the shape of transparent objects, thereby avoiding the rotation or movement of the object during imaging. In addition, a simple and cost-effective experimental setup is presented, which employs two single-pixel detectors and a digital micromirror device, for imaging transparent objects by projecting binary patterns. In the system setup, a dark framework is implemented around the object, to create shades at the boundaries of the object. By triangulating the light path from the object, the surface shape is recovered, neither considering the reflections nor the number of refractions. It can, therefore, handle transparent objects with a relatively complex shape with the unknown refractive index. The implementation of compressive sensing in this technique further simplifies the acquisition process, by reducing the number of measurements. The experimental results show that 2D images obtained from the single-pixel detectors are better in quality with a resolution of 32×32. Additionally, the obtained disparity and error map indicate the feasibility and accuracy of the proposed method. This work provides a new insight into 3D transparent object detection and reconstruction, based on single-pixel imaging at an affordable cost, with the implementation of a few numbers of detectors.
  14. A Almusaylim Z, Jhanjhi NZ, Alhumam A
    Sensors (Basel), 2020 Oct 22;20(21).
    PMID: 33105891 DOI: 10.3390/s20215997
    The rapid growth of the Internet of Things (IoT) and the massive propagation of wireless technologies has revealed recent opportunities for development in various domains of real life, such as smart cities and E-Health applications. A slight defense against different forms of attack is offered for the current secure and lightweight Routing Protocol for Low Power and Lossy Networks (RPL) of IoT resource-constrained devices. Data packets are highly likely to be exposed in transmission during data packet routing. The RPL rank and version number attacks, which are two forms of RPL attacks, can have critical consequences for RPL networks. The studies conducted on these attacks have several security defects and performance shortcomings. In this research, we propose a Secure RPL Routing Protocol (SRPL-RP) for rank and version number attacks. This mainly detects, mitigates, and isolates attacks in RPL networks. The detection is based on a comparison of the rank strategy. The mitigation uses threshold and attack status tables, and the isolation adds them to a blacklist table and alerts nodes to skip them. SRPL-RP supports diverse types of network topologies and is comprehensively analyzed with multiple studies, such as Standard RPL with Attacks, Sink-Based Intrusion Detection Systems (SBIDS), and RPL+Shield. The analysis results showed that the SRPL-RP achieved significant improvements with a Packet Delivery Ratio (PDR) of 98.48%, a control message value of 991 packets/second, and an average energy consumption of 1231.75 joules. SRPL-RP provided a better accuracy rate of 98.30% under the attacks.
  15. Butt AH, Akbar B, Aslam J, Akram N, Soudagar MEM, García Márquez FP, et al.
    Sensors (Basel), 2020 Oct 21;20(20).
    PMID: 33096774 DOI: 10.3390/s20205954
    Vertical axis wind turbines (VAWT) are a source of renewable energy and are used for both industrial and domestic purposes. The study of noise characteristics of a VAWT is an important performance parameter for the turbine. This study focuses on the development of a linear microphone array and measuring acoustic signals on a cambered five-bladed 45 W VAWT in an anechoic chamber at different tip speed ratios. The sound pressure level spectrum of VAWT shows that tonal noises such as blade passing frequencies dominate at lower frequencies whereas broadband noise corresponds to all audible ranges of frequencies. This study shows that the major portion of noise from the source is dominated by aerodynamic noises generated due to vortex generation and trailing edge serrations. The research also predicts that dynamic stall is evident in the lower Tip speed ratio (TSR) region making smaller TSR values unsuitable for a quiet VAWT. This paper compares the results of linear aeroacoustic array with a 128-MEMS acoustic camera with higher resolution. The study depicts a 3 dB margin between two systems at lower TSR values. The research approves the usage of the 8 mic linear array for small radius rotary machinery considering the results comparison with a NORSONIC camera and its resolution. These observations serve as a basis for noise reduction and blade optimization techniques.
  16. Adesipo A, Fadeyi O, Kuca K, Krejcar O, Maresova P, Selamat A, et al.
    Sensors (Basel), 2020 Oct 22;20(21).
    PMID: 33105622 DOI: 10.3390/s20215977
    Attention has shifted to the development of villages in Europe and other parts of the world with the goal of combating rural-urban migration, and moving toward self-sufficiency in rural areas. This situation has birthed the smart village idea. Smart village initiatives such as those of the European Union is motivating global efforts aimed at improving the live and livelihood of rural dwellers. These initiatives are focused on improving agricultural productivity, among other things, since most of the food we eat are grown in rural areas around the world. Nevertheless, a major challenge faced by proponents of the smart village concept is how to provide a framework for the development of the term, so that this development is tailored towards sustainability. The current work examines the level of progress of climate smart agriculture, and tries to borrow from its ideals, to develop a framework for smart village development. Given the advances in technology, agricultural development that encompasses reduction of farming losses, optimization of agricultural processes for increased yield, as well as prevention, monitoring, and early detection of plant and animal diseases, has now embraced varieties of smart sensor technologies. The implication is that the studies and results generated around the concept of climate smart agriculture can be adopted in planning of villages, and transforming them into smart villages. Hence, we argue that for effective development of the smart village framework, smart agricultural techniques must be prioritized, viz-a-viz other developmental practicalities.
  17. Mohammadi A, Karimzadeh S, Jalal SJ, Kamran KV, Shahabi H, Homayouni S, et al.
    Sensors (Basel), 2020 Dec 16;20(24).
    PMID: 33339435 DOI: 10.3390/s20247214
    Digital elevation model (DEM) plays a vital role in hydrological modelling and environmental studies. Many essential layers can be extracted from this land surface information, including slope, aspect, rivers, and curvature. Therefore, DEM quality and accuracy will affect the extracted features and the whole process of modeling. Despite freely available DEMs from various sources, many researchers generate this information for their areas from various observations. Sentinal-1 synthetic aperture radar (SAR) images are among the best Earth observations for DEM generation thanks to their availabilities, high-resolution, and C-band sensitivity to surface structure. This paper presents a comparative study, from a hydrological point of view, on the quality and reliability of the DEMs generated from Sentinel-1 data and DEMs from other sources such as AIRSAR, ALOS-PALSAR, TanDEM-X, and SRTM. To this end, pair of Sentinel-1 data were acquired and processed using the SAR interferometry technique to produce a DEM for two different study areas of a part of the Cameron Highlands, Pahang, Malaysia, a part of Sanandaj, Iran. Based on the estimated linear regression and standard errors, generating DEM from Sentinel-1 did not yield promising results. The river streams for all DEMs were extracted using geospatial analysis tool in a geographic information system (GIS) environment. The results indicated that because of the higher spatial resolution (compared to SRTM and TanDEM-X), more stream orders were delineated from AIRSAR and Sentinel-1 DEMs. Due to the shorter perpendicular baseline, the phase decorrelation in the created DEM resulted in a lot of noise. At the same time, results from ground control points (GCPs) showed that the created DEM from Sentinel-1 is not promising. Therefore, other DEMs' performance, such as 90-meters' TanDEM-X and 30-meters' SRTM, are better than Sentinel-1 DEM (with a better spatial resolution).
  18. Ying KS, Heng LY, Hassan NI, Hasbullah SA
    Sensors (Basel), 2020 Dec 03;20(23).
    PMID: 33287113 DOI: 10.3390/s20236898
    An all-solid-state potentiometric electrode system for aluminium ion determination was developed with a new aluminium ion sensor as the working electrode based on a new ionophore for aluminium ion, 1,1'-[(methylazanediyl)bis(ethane-2,1-diyl)]bis[3-(naphthalen-1-yl)thiourea] (ACH). The reference electrode was a potassium ion sensor, which acts as a pseudo-reference. Both electrodes were made from Ag/AgCl screen-print electrodes fabricated from a non-plasticized and photocurable poly(n-butyl acrylate) membrane that contained various other membrane components. The pseudo-reference potential based on the potassium ion sensor was fixed in 0.050 M KNO3, and such concentration of K+ ion did not interfere with the measurement of the Al3+ ion using the aluminium sensor. With such a pseudo-reference and in the presence of 0.050 M KNO3 as a background medium, the aluminium sensor measured changes of aluminium ion concentrations linearly from 10-6 to 10-2 M Al3+ ion with a Nernstian response of 17.70 ± 0.13 mV/decade. A low detection limit of 2.45 × 10-7 M was achieved with this all-solid-state potentiometric system. The aluminium sensor was insensitive to pH effects from 2.0 to 8.0 with a response time of less than 50 s. Under optimum conditions, a lifetime of 49 days was achieved with good sensor selectivity, reversibility, repeatability, and reproducibility. The all-solid-state electrode system was applied to analyze the Al3+ ion content of water samples from a water treatment plant. Compared with the conventional potentiometric detection system for aluminium ions, the new all-solid-state aluminium ion sensor incorporating a pseudo-reference from the potassium sensor demonstrated similar analytical performance. It thus provided a convenient means of aluminium content analysis in water treatment plants.
  19. Peng C, Wu C, Gao L, Zhang J, Alvin Yau KL, Ji Y
    Sensors (Basel), 2020 Sep 07;20(18).
    PMID: 32906707 DOI: 10.3390/s20185079
    The vehicular Internet of Things (IoT) comprises enabling technologies for a large number of important applications including collaborative autonomous driving and advanced transportation systems. Due to the mobility of vehicles, strict application requirements, and limited communication resources, the conventional centralized control fails to provide sufficient quality of service for connected vehicles, so a decentralized approach is required in the vicinity to satisfy the requirements of delay-sensitive and mission-critical applications. A decentralized system is also more resistant to the single point of failure problem and malicious attacks. Blockchain technology has been attracting great interest due to its capability of achieving a decentralized, transparent, and tamper-resistant system. There are many studies focusing on the use of blockchain in managing data and transactions in vehicular environments. However, the application of blockchain in vehicular environments also faces some technical challenges. In this paper, we first explain the fundamentals of blockchain and vehicular IoT. Then, we conduct a literature review on the existing research efforts of the blockchain for vehicular IoT by discussing the research problems and technical issues. After that, we point out some future research issues considering the characteristics of both blockchain and vehicular IoT.
  20. Fattah S, Gani A, Ahmedy I, Idris MYI, Targio Hashem IA
    Sensors (Basel), 2020 Sep 21;20(18).
    PMID: 32967124 DOI: 10.3390/s20185393
    The domain of underwater wireless sensor networks (UWSNs) had received a lot of attention recently due to its significant advanced capabilities in the ocean surveillance, marine monitoring and application deployment for detecting underwater targets. However, the literature have not compiled the state-of-the-art along its direction to discover the recent advancements which were fuelled by the underwater sensor technologies. Hence, this paper offers the newest analysis on the available evidences by reviewing studies in the past five years on various aspects that support network activities and applications in UWSN environments. This work was motivated by the need for robust and flexible solutions that can satisfy the requirements for the rapid development of the underwater wireless sensor networks. This paper identifies the key requirements for achieving essential services as well as common platforms for UWSN. It also contributes a taxonomy of the critical elements in UWSNs by devising a classification on architectural elements, communications, routing protocol and standards, security, and applications of UWSNs. Finally, the major challenges that remain open are presented as a guide for future research directions.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links