This study presents the isolation and screening of fungi with excellent ability to degrade untreated oil palm trunk (OPT) in a solid-state fermentation system (SSF). Qualitative assay of cellulases and xylanase indicates notable secretion of both enzymes by 12 fungal strains from a laboratory collection and 5 strains isolated from a contaminated wooden board. High production of these enzymes was subsequently quantified in OPT in SSF. Aspergillus fumigates SK1 isolated from cow dung gives the highest xylanolytic activity (648.448 U g(-1)), generally high cellulolytic activities (CMCase: 48.006, FPase: 6.860, beta-glucosidase: 16.328 U g(-1)) and moderate lignin peroxidase activity (4.820 U/g), and highest xylanolytic activity. The xylanase encoding gene of Aspergillus fumigates SK1 was screened using polymerase chain reaction by a pair of degenerate primers. Through multiple alignment of the SK1 strain's xylanase nucleotide sequences with other published xylanases, it was confirmed that the gene belonged to the xylanase glycoside hydrolase family 11 (GH11) with a protein size of 24.49 kD. Saccharification of lemongrass leaves using crude cellulases and xylanase gives the maximum reducing sugars production of 6.84 g/L with glucose as the major end product and traces of phenylpropanic compounds (vanillic acid, p-coumaric acid, and ferulic acid).
Although the multi-copy and specific element IS6110 provides a good target for the detection of Mycobacterium tuberculosis complex by PCR techniques, the emergence of IS6110-negative strains suggested that false negative may occur if IS6110 alone is used as the target for detection. In this report, a multiplex polymerase chain reaction (mPCR) system was developed using primers derived from the insertion sequence IS6110 and an IS-like elements designated as B9 (GenBank accession no. U78639.1) to overcome the problem of detecting negative or low copy IS6110 containing strains of M. tuberculosis. The mPCR was evaluated using 346 clinical samples which included 283 sputum, 19 bronchial wash, 18 pleural fluid, 9 urine, 7 CSF, 6 pus, and 4 gastric lavage samples. Our results showed that the sensitivity (93.1 %) and specificity (89.6 %) of the mPCR system exceeds that of the conventional method of microscopy and culture. The mPCR assay provides an efficient strategy to detect and identify M. tuberculosis from clinical samples and enables prompt diagnosis when rapid identification of infecting mycobacteria is necessary.
Microbial diversity within formation water and oil from two compartments in Bokor oil reservoir from a Malaysian petroleum oil field was examined. A total of 1,056 16S rRNA gene clones were screened from each location by amplified ribosomal DNA restriction analysis. All samples were dominated by clones affiliated with Marinobacter, some novel Deferribacteraceae genera and various clones allied to the Methanococci. In addition, either Marinobacterium- or Pseudomonas-like operational taxonomic units were detected from either compartment. A systematic comparison with the existing pertinent studies was undertaken by analysing the microbial amplicons detected and the PCR primers used. The analyses demonstrated that bacterial communities were site specific, while Archaea co-occurred more frequently. Amplicons related to Marinobacter, Marinobacterium and Pseudomonas were detected in a number of the studies examined, suggesting they may be ubiquitous members in oil reservoirs. Further analysis of primers used in those studies suggested that most primer pairs had fairly broad but low matches across the bacterial and archaeal domains, while a minority had selective matches to certain taxa or low matches to all the microbial taxa tested. Thus, it indicated that primers may play an important role in determining which taxa would be detected.
Microsporidia are ubiquitous parasites thought to be closely related to fungi. Their presence in the environment means that humans are frequently exposed to infection. Stool samples were collected from 151 indigenous villagers from the eastern state of Pahang in 2005. The samples were concentrated with water-ether sedimentation, stained with modified trichrome stain and examined under oil-immersion microscopy. Thirty-two specimens (21.2%) were positive for microsporidia. Microsporidia were observed as ovoid or rounded ovoid shapes measuring approximately 1mum, with a bright pink outline containing a central or posterior vacuole. PCR amplification with specific primers on microscopy-positive specimens amplified Encephalitozoon intestinalis DNA from five of the ten specimens used.
Familial hypercholesterolaemia (FH) and Familial defective apolipoprotein B100 (FDB) are autosomal dominant inherited diseases of lipid metabolism caused by mutations in the low density lipoprotein (LDL) receptor and apolipoprotein B 100 genes. FH is clinically characterised by elevated concentrations of total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C), presence of xanthomata and premature atherosclerosis. Both conditions are associated with coronary artery disease but may be clinically indistinguishable. Seventy-two (72) FH patients were diagnosed based on the Simon Broome's criteria. Mutational screening was performed by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). Positive mutations were subjected to DNA sequencing for confirmation of the mutation. We successfully amplified all exons in the LDL receptor and apo B100 genes. DGGE was performed in all exons of the LDL receptor (except for exons 4-3', 18 and promoter region) and apo B100 genes. We have identified four different mutations in the LDL receptor gene but no mutation was detected in the apo B 100 gene. The apo B100 gene mutation was not detected on DGGE screening as sequencing was not performed for negative cases on DGGE technique. To our knowledge, the C234S mutation (exon 5) is a novel mutation worldwide. The D69N mutation (exon 3) has been reported locally while the R385W (exon 9) and R716G (exon 15) mutations have not been reported locally. However, only 4 mutations have been identified among 14/72 patients (19.4%) in 39 FH families. Specificity (1-false positive) of this technique was 44.7% based on the fact that 42/76 (55.3%) samples with band shifts showed normal DNA sequencing results. A more sensitive method needs to be addressed in future studies in order to fully characterise the LDLR and apo B100 genes such as denaturing high performance liquid chromatography. In conclusion, we have developed the DNA analysis for FH patients using PCR-DGGE technique. DNA analysis plays an important role to characterise the type of mutations and forms an adjunct to clinical diagnosis.
Giardia duodenalis is an intestinal parasite that causes diarrhoea and malabsorption in children. The parasite also infects AIDS patients with a weak immune system. A study was carried out on six local isolates of Giardia duodenalis (110, 7304, 6304, M007, 2002 and 6307) from faeces of Orang Asli patients admitted to the Gombak Hospital. WB, a reference pathogenic strain from human and G. muris from a wild mouse, were commercially obtained from the American Type Culture Collection (ATCC). All the isolates were cultured axenically in TYI-S-33 medium. Two sets of primers were used for the techniques: primers LP1 and RP1 and primers LP2 and RP2. The sets of primers amplified giardine gene of 171 bp and 218 bp in sizes respectively. The study showed that the two sets of primers could detect G. duodenalis to the genus and species level specifically.
The mRNA differential display method was utilized to study the differential expression and regulation of genes in two species of oil palm, the commercially grown variety Elaeis guineensis, var. tenera and the South American species, Elaeis oleifera. We demonstrated the differential expression of genes in the mesocarp and kernel at the week of active oil synthesis (15 week after anthesis) during fruit development as compare to the roots and leaves and the isolation of tissue-specific and species-specific cDNA clones. A total of eight specific cDNA clones were isolated and their specificities were confirmed by Northern hybridization and classified into three groups. Group one contains four clones (KT3, KT4, KT5 and KT6) that are kernel-specific for E. guineensis, tenera and E. oleifera. The second group represents clone FST1, which is mesocarp and kernel-specific for E. guineensis, tenera and E. oleifera. The third group represents clones MLT1, MLT2 and MLO1 that are mesocarp and leaf-specific. Northern analysis showed that their expressions were developmentally regulated. Nucleotide sequencing and homology search in GenBank data revealed that clones KT3 and KT4 encode for the same maturation protein PM3. While clones MLT1 and MLT2 encode for S-ribonuclease binding protein and fibrillin, respectively. The other clones (KT5, KT6, FST1 and MLO1) did not display any significant homology to any known protein.
The genus Rana, notably diversified in Oriental regions from China to Southeast Asia, includes a group of cascade frogs assigned to subgenera Odorrana and Eburana. Among them, R. ishikawae and the R. narina complex represent the northernmost members occurring from Taiwan to the Ryukyu Archipelago of Japan. Relationships of these frogs with the continental members, as well as the history of their invasions to islands, have been unclear. The taxonomic status of Odorrana and related genera varies among authors and no phylogenetic reassessment has been done. Using partial sequences of mitochondrial 12S and 16S rRNA genes, we estimated phylogenetic relationships among 17 species of the section Hylarana including Odorrana and Eburana, and related species from the Ryukyus, Taiwan, China, Thailand, Malaysia, and Indonesia. We estimate that (1) Odorrana is monophyletic and encompasses species of Eburana and R. hosii, which is now placed in Chalcorana, (2) the ancestor of R. ishikawae separated from other Rana in the middle to late Miocene prior to its entry to the Ryukyu Archipelago, (3) the ancestor of the R. narina complex later diversified in continental Asia, and invaded the Ryukyu Archipelago through Taiwan, (4) the R. narina complex attained its current distribution within the Ryukyus through niche segregations, and (5) vicariance of R. hosii between Malay Peninsula and Borneo occurred much later than the divergence events in the R. narina complex. Current subgeneric classification of Rana, at least of Southeast Asian members, requires full reassessment in the light of phylogenetic relationships.
The present study describes a real-time PCR approach with high resolution melting-curve (HRM) assay developed for the detection and differentiation of Schistosoma mansoni and S. haematobium in fecal and urine samples collected from rural Yemen. The samples were screened by microscopy and PCR for the Schistosoma species infection. A pair of degenerate primers were designed targeting partial regions in the cytochrome oxidase subunit I (cox1) gene of S. mansoni and S. haematobium using real-time PCR-HRM assay. The overall prevalence of schistosomiasis was 31.8%; 23.8% of the participants were infected with S. haematobium and 9.3% were infected with S. mansoni. With regards to the intensity of infections, 22.1% and 77.9% of S. haematobium infections were of heavy and light intensities, respectively. Likewise, 8.1%, 40.5% and 51.4% of S. mansoni infections were of heavy, moderate and light intensities, respectively. The melting points were distinctive for S. mansoni and S. haematobium, categorized by peaks of 76.49 ± 0.25 °C and 75.43 ± 0.26 °C, respectively. HRM analysis showed high detection capability through the amplification of Schistosoma DNA with as low as 0.0001 ng/µL. Significant negative correlations were reported between the real-time PCR-HRM cycle threshold (Ct) values and microscopic egg counts for both S. mansoni in stool and S. haematobium in urine (p < 0.01). In conclusion, this closed-tube HRM protocol provides a potentially powerful screening molecular tool for the detection of S. mansoni and S. haematobium. It is a simple, rapid, accurate, and cost-effective method. Hence, this method is a good alternative approach to probe-based PCR assays.
Pulsed field gel electrophoresis analysis of genomic DNA was used to investigate genetic diversity among Dichelobacter nodosus from footrot in sheep in Malaysia. Twelve Dichelobacter nodosus strains isolated from lesion materials from infected sheep were confirmed as Dichelobacter nodosus by polymerase chain reaction technique using the species-specific Dichelobacter nodosus 16S RNA sequence Ac and C as primers. Pulsed field gel electrophoresis banding profiles using restriction enzymes ApaI (5'GGGCCC3'), SfiI (5'GGCCNNNNNGGCC3') and SmaI ('5CCCGGG3') enabled the 12 Dichelobacter nodosus strains to be differentiated into eight different PFGE patterns and thus genome-types, with F (coefficient of similarity) values ranging from 0.17 to 1.0 (ApaI), 0.14 to 1.0 (SfiI) and 0.22 to 1.0 (SmaI). Strains with origin in different farms were shown to have different PFGE patterns (two strains, M7 and M8 were the only exception). On the basis of their PFGE, all field strains used in the study differed from the reference strains. Our data revealed that there are several clonal types of Dichelobacter nodosus isolates and indicated that there is probably more than one source of this pathogen on the farms studied. The study showed that strains of D. nodosus exhibited considerable genetic diversity using this method and that genomic analysis by pulsed field gel electrophoresis was useful in discriminating the D. nodosus strains.
We investigate the evolution of host association in a cryptic complex of mutualistic Crematogaster (Decacrema) ants that inhabits and defends Macaranga trees in Southeast Asia. Previous phylogenetic studies based on limited samplings of Decacrema present conflicting reconstructions of the evolutionary history of the association, inferring both cospeciation and the predominance of host shifts. We use cytochrome oxidase I (COI) to reconstruct phylogenetic relationships in a comprehensive sampling of the Decacrema inhabitants of Macaranga. Using a published Macaranga phylogeny, we test whether the ants and plants have cospeciated. The COI phylogeny reveals 10 well-supported lineages and an absence of cospeciation. Host shifts, however, have been constrained by stem traits that are themselves correlated with Macaranga phylogeny. Earlier lineages of Decacrema exclusively inhabit waxy stems, a basal state in the Pachystemon clade within Macaranga, whereas younger species of Pachystemon, characterized by nonwaxy stems, are inhabited only by younger lineages of Decacrema. Despite the absence of cospeciation, the correlated succession of stem texture in both phylogenies suggests that Decacrema and Pachystemon have diversified in association, or codiversified. Subsequent to the colonization of the Pachystemon clade, Decacrema expanded onto a second clade within Macaranga, inducing the development of myrmecophytism in the Pruinosae group. Confinement to the aseasonal wet climate zone of western Malesia suggests myrmecophytic Macaranga are no older than the wet forest community in Southeast Asia, estimated to be about 20 million years old (early Miocene). Our calculation of COI divergence rates from several published arthropod studies that relied on tenable calibrations indicates a generally conserved rate of approximately 1.5% per million years. Applying this rate to a rate-smoothed Bayesian chronogram of the ants, the Decacrema from Macaranga are inferred to be at least 12 million years old (mid-Miocene). However, using the extremes of rate variation in COI produces an age as recent as 6 million years. Our inferred timeline based on 1.5% per million years concurs with independent biogeographical events in the region reconstructed from palynological data, thus suggesting that the evolutionary histories of Decacrema and their Pachystemon hosts have been contemporaneous since the mid-Miocene. The evolution of myrmecophytism enabled Macaranga to radiate into enemy-free space, while the ants' diversification has been shaped by stem traits, host specialization, and geographic factors. We discuss the possibility that the ancient and exclusive association between Decacrema and Macaranga was facilitated by an impoverished diversity of myrmecophytes and phytoecious (obligately plant inhabiting) ants in the region.
A pair of primers targeting the hlyA gene for Vibrio cholerae which could distinguish the classical from El Tor biotypes was designed and combined with other specific primers for ompW, rfb complex, and virulence genes such as ctxA, toxR, and tcpI in a multiplex PCR (m-PCR) assay. This m-PCR correctly identified 39 V. cholerae from clinical, water and seafood samples. The efficiency of this multiplex PCR (m-PCR) was compared with conventional biochemical and serogrouping methods. One O139 and 25 O1 V. cholerae strains including 10 environmental strains harbored all virulence-associated genes except 1 clinical strain which only had toxR and hlyA genes. Thirteen environmental strains were classified as non-O1/non-O139 and had the toxR and hlyA genes only. The detection limit of m-PCR was 7 x 10(4) cfu/ml. The m-PCR test was reliable and rapid and reduced the identification time to 4 h.
Enterovirus 71 (EV71), one of the major causative agents for hand, foot and mouth disease (HFMD), is sometimes associated with severe central nervous system diseases. In 1997, in Malaysia and Japan, and in 1998 in Taiwan, there were HFMD epidemics involving sudden deaths among young children, and EV71 was isolated from the HFMD patients, including the fatal cases. The nucleotide sequences of each EV71 isolate were determined and compared by phylogenetical analysis. EV71 strains from previously reported epidemics belonged to genotype A-1, while those from recent epidemics could be divided into two genotypes, A-2 and B. In Malaysia, genotype A-2 was more prevalent, while in Japan and Taiwan, B genotype was more prevalent. Two isolates from fatal cases in Malaysia and one isolate from a fatal case in Japan were genotype A-2. However, all isolates from three fatal cases in Taiwan belonged to genotype B. The severity of the HFMD did not link directly to certain genotypes of EV71.
Entamoeba histolytica is the only Entamoeba species that causes amoebiasis in humans. Approximately 50 million people are infected, with 100, 000 deaths annually in endemic countries. Molecular diagnosis of Entamoeba histolytica is important to differentiate it from the morphologically identical Entamoeba dispar to avoid unnecessary medication. Conventional molecular diagnostic tests require trained personnel, cold-chain transportation and/or are storage-dependent, which make them user-unfriendly. The aim of this study was to develop a thermostabilized, one-step, nested, tetraplex PCR assay for the detection of Entamoeba histolytica, Entamoeba dispar and Entamoeba species in cold-chain-free and ready-to-use form. The PCR test was designed based on the Entamoeba small subunit rRNA (SSU-rRNA) gene, which detects the presence of any Entamoeba species, and simultaneously can be used to differentiate Entamoeba histolytica from Entamoeba dispar. In addition, a pair of primers was designed to serve as an internal amplification control to help identify inhibitors in the samples. All PCR reagents together with the designed primers were thermostabilized by lyophilization and were stable at 24 °C for at least 6 months. The limit of detection of the tetraplex PCR was found to be 39 pg DNA or 1000 cells for Entamoeba histolytica and 78 pg DNA or 1000 cells for Entamoeba dispar, and the specificity was 100 %. In conclusion, this cold-chain-free, thermostabilized, one-step, nested, multiplex PCR assay was found to be efficacious in differentiating Entamoeba histolytica from other non-pathogenic Entamoeba species.
The suitability of a PCR procedure using a pair of primers targeting the hilA gene was evaluated as a means of detecting Salmonella species. A total of 33 Salmonella strains from 27 serovars and 15 non-Salmonella strains from eight different genera were included. PCR with all the Salmonella strains produced a 784 bp DNA fragment that was absent from all the non-Salmonella strains tested. The detection limit of the PCR was 100 pg with genomic DNA and 3 x 10(4) c.f.u. ml(-1) with serial dilutions of bacterial culture. An enrichment-PCR method was further developed to test the sensitivity of the hilA primers for the detection of Salmonella in faecal samples spiked with different concentrations of Salmonella choleraesuis subsp. choleraesuis serovar Typhimurium. The method described allowed the detection of Salmonella Typhimurium in faecal samples at a concentration of 3 x 10(2) c.f.u. ml(-1). In conclusion, the hilA primers are specific for Salmonella species and the PCR method presented may be suitable for the detection of Salmonella in faeces.
Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
Avian Influenza viruses belonging to the Orthomyxoviridae family are enveloped viruses with segmented negative sense RNA genome surrounded by a helical symmetry capsid. Influenza viruses, especially the highly pathogenic avian influenza virus (HPAI) such as H5 or H7 subtype are the most important pathogens for the poultry industry in recent times. The haemagglutinin protein and neuraminidase, serves as the target for the immune response of the host. Due to recurrent genetic reassortments between avian and human influenza viruses, global pandemics may emerge and the naive human immunity could not withstand pressure by the novel hybrid virus. The emergence of genetic engineering technology provided the industry with new methods of manufacturing diagnostics tools and vaccines. After extraction of RNA from the cell culture of strain influenza A/Chicken/Malaysia/2004(H5N1) of AIV, the viral RNA was converted to cDNA by a specific primer. The cDNA was amplified by the polymerase chain reaction (PCR) and analyzed
by agarose gel electrophoresis. The intact PCR product of full length haemagglutinin gene was cloned in TO POTM TA Cloning vector. The full-length HA-encoding gene of H5N1 AIV was subcloned into a pPICZA vector. After successful ligation, the constructed plasmid was transformed into E.coli.Top10, Plasmid DNA from transformed bacteria was extracted in white colony and positive clones were confirmed by restriction digestion with Sacl and Not1 restriction enzymes, colony PCR screening and nucleotide sequencing. Construction of a recombinant pPICZA/H5HA plasmid containing the full length haemagglutinin gene was achieved as a first step
towards the expression in Pichia pastoris.
Yardlong bean (Vigna unguiculata subsp. sesquipedalis) is extensively cultivated in Indonesia for consumption as a green vegetable. During the 2008 season, a severe outbreak of a virus-like disease occurred in yardlong beans grown in farmers' fields in Bogor, Bekasi, Subang, Indramayu, and Cirebon of West Java, Tanggerang of Banten, and Pekalongan and Muntilan of Central Java. Leaves of infected plants showed severe mosaic to bright yellow mosaic and vein-clearing symptoms, and pods were deformed and also showed mosaic symptoms on the surface. In cv. 777, vein-clearing was observed, resulting in a netting pattern on symptomatic leaves followed by death of the plants as the season advanced. Disease incidence in the Bogor region was approximately 80%, resulting in 100% yield loss. Symptomatic leaf samples from five representative plants tested positive in antigen-coated plate-ELISA with potyvirus group-specific antibodies (AS-573/1; DSMZ, German Resource Center for Biological Material, Braunschweig, Germany) and antibodies to Cucumber mosaic virus (CMV; AS-0929). To confirm these results, viral nucleic acids eluted from FTA classic cards (FTA Classic Card, Whatman International Ltd., Maidstone, UK) were subjected to reverse transcription (RT)-PCR using potyvirus degenerate primers (CIFor: 5'-GGIVVIGTIGGIWSIGGIAARTCIAC-3' and CIRev: 5'-ACICCRTTYTCDATDATRTTIGTIGC-3') (3) and degenerate primers (CMV-1F: 5'-ACCGCGGGTCTTATTATGGT-3' and CMV-1R: 5' ACGGATTCAAACTGGGAGCA-3') specific for CMV subgroup I (1). A single DNA product of approximately 683 base pairs (bp) with the potyvirus-specific primers and a 382-bp fragment with the CMV-specific primers were amplified from ELISA-positive samples. These results indicated the presence of a potyvirus and CMV as mixed infections in all five samples. The amplified fragments specific to potyvirus (four samples) and CMV (three samples) were cloned separately into pCR2.1 (Invitrogen Corp., Carlsbad, CA). Two independent clones per amplicon were sequenced from both orientations. Pairwise comparison of these sequences showed 93 to 100% identity among the cloned amplicons produced using the potyvirus-specific primers (GenBank Accessions Nos. FJ653916, FJ653917, FJ653918, FJ653919, FJ653920, FJ653921, FJ653922, FJ653923, FJ653924, FJ653925, and FJ653926) and 92 to 97% with a corresponding nucleotide sequence of Bean common mosaic virus (BCMV) from Taiwan (No. AY575773) and 88 to 90% with BCMV sequences from China (No. AJ312438) and the United States (No. AY863025). The sequence analysis indicated that BCMV isolates from yardlong bean are more closely related to an isolate from Taiwan than with isolates from China and the United States. The CMV isolates (GenBank No. FJ687054) each were 100% identical and 96% identical with corresponding sequences of CMV subgroup I isolates from Thailand (No. AJ810264) and Malaysia (No. DQ195082). Both BCMV and CMV have been documented in soybean, mungbean, and peanut in East Java of Indonesia (2). Previously, BCMV, but not CMV, was documented on yardlong beans in Guam (4). To our knowledge, this study represents the first confirmed report of CMV in yardlong bean in Indonesia and is further evidence that BCMV is becoming established in Indonesia. References: (1) J. Aramburu et al. J. Phytopathol. 155:513, 2007. (2) S. K. Green et al. Plant Dis. 72:994, 1988. (3) C. Ha et al. Arch. Virol. 153:25, 2008. (4) G. C. Wall et al. Micronesica 29:101, 1996.
We have previously reported an interaction between -514C>T polymorphism at the hepatic lipase (HL) gene and dietary fat on high-density lipoprotein-cholesterol (HDL-C) metabolism in a representative sample of white subjects participating in the Framingham Heart Study. Replication of these findings in other populations will provide proof for the relevance and consistency of this marker as a tool for risk assessment and more personalized cardiovascular disease prevention. Therefore, we examined this gene-nutrient interaction in a representative sample of Singaporeans (1324 Chinese, 471 Malays and 375 Asian Indians) whose dietary fat intake was recorded by a validated questionnaire. When no stratification by fat intake was considered, the T allele was associated with higher plasma HDL-C concentrations (P = 0.001), higher triglyceride (TG) concentrations (P = 0.001) and higher HDL-C/TG ratios (P = 0.041). We found a highly significant interaction (P = 0.001) between polymorphism and fat intake in determining TG concentration and the HDL-C/TG ratio (P = 0.001) in the overall sample even after adjustment for potential confounders. Thus, TT subjects showed higher TG concentrations only when fat intake supplied >30% of total energy. This interaction was also found when fat intake was considered as continuous (P = 0.035). Moreover, in the upper tertile of fat intake, TT subjects had 45% more TG than CC individuals (P < 0.01). For HDL-C concentration, the gene-diet interaction was significant (P = 0.015) only in subjects of Indian origin. In conclusion, our results indicate that there are differences in the association of -514C>T polymorphism with plasma lipids according to dietary intake and ethnic background. Specifically, the TT genotype is associated with a more atherogenic lipid profile when subjects consume diets with a fat content > 30%.
BACKGROUND: Cytochrome P450 (CYP) 2C8 is a principle enzyme responsible for the metabolism of many clinically important drugs as well as endogenous compounds such as arachidonic acid. The enzyme is genetically polymorphic but a simple method is not available to study its genetic polymorphism. We developed and optimized a variant-specific PCR techniques to detect CYP2C8*2, CYP2C8*3 and CYP2C8*4.
METHOD: Genomic DNA was extracted from blood using standard extraction methods. A two-step PCR method was developed to detect simultaneously three CYP2C8 variants. In the first PCR (PCR1), specific regions from exons 3, 5 and 8 of the CYP2C8 gene were amplified. The products were used as templates in parallel alleles-specific PCR (PCR2). This method was tested against DNA samples obtained from 57 healthy Malaysian volunteers.
RESULT: The bands of interest were successfully amplified. This method showed specific and reproducible results when tested on healthy volunteers. DNA sequencing further confirmed genotype results obtained from current method.
CONCLUSION: We have successfully developed and optimized a multiplex PCR method suitable for use in population studies of CYP2C8 polymorphism.