Displaying publications 2681 - 2700 of 8211 in total

Abstract:
Sort:
  1. Weng PL, Ramli R, Hamat RA
    PMID: 31533204 DOI: 10.3390/ijerph16183439
    Enterococci are commonly found in humans, animals and environments. Their highly adaptive mechanisms are related to several virulent determinants and their ability to resist antibiotics. Data on the relationship between the esp gene, biofilm formation and antibiotic susceptibility profiles may differ between countries. This cross-sectional study was conducted to determine the proportion of esp gene and biofilm formation among Enterococcus faecalis and Enterococcus faecium clinical isolates. We also investigated the possible association between the esp gene with antibiotic susceptibility patterns and biofilm formation. The isolates were collected from clinical samples and identified using biochemical tests and 16SRNA. Antibiotic susceptibility patterns and a biofilm assay were conducted according to the established guidelines. Molecular detection by PCR was used to identify the esp gene using established primers. In total, 52 and 28 of E. faecalis and E. faecium were identified, respectively. E. faecium exhibited higher resistance rates compared to E. faecalis as follows: piperacillin/tazobactam (100% versus 1.9%), ampicillin (92.8% versus 1.9%), high-level gentamicin resistance (HLGR) (89.3% versus 25.0%) and penicillin (82.1% versus 7.7%). E. faecium produced more biofilms than E. faecalis (59.3% versus 49.0%). E. faecium acquired the esp gene more frequently than E. faecalis (78.6% versus 46.2%). Interestingly, the associations between ampicillin and tazobactam/piperacillin resistance with the esp gene were statistically significant (X2 = 4.581, p = 0.027; and X2 = 6.276, p = 0.012, respectively). Our results demonstrate that E. faecium exhibits high rates of antimicrobial resistance, esp gene acquisition and biofilm formation. These peculiar traits of E. faecium may have implications for the management of enterococcal infections in hospitals. Thus, concerted efforts by all parties in establishing appropriate treatment and effective control measures are warranted in future.
    Matched MeSH terms: Bacterial Proteins/genetics*; Membrane Proteins/genetics*; Enterococcus faecalis/genetics; Enterococcus faecium/genetics
  2. Senthil Kumar R, Srinivasan R, Rawdzah MA, Malini P
    Genomics, 2020 03;112(2):1464-1476.
    PMID: 31450005 DOI: 10.1016/j.ygeno.2019.08.017
    Pieris rapae is a serious pest of brassicas worldwide. We performed de novo assembly of P. rapae transcriptome by next-generation sequencing and assembled approximately 65,727,422 clean paired-end reads into 32,118 unigenes, of which 13,585 were mapped to 255 pathways in the KEGG database. A total of 6173 novel transcripts were identified from reads directly mapped to P. rapae genome. Additionally, 1490 SSRs, 301,377 SNPs, and 29,284 InDels were identified as potential molecular markers to explore polymorphism within P. rapae populations. We screened and mapped 36 transcripts related to OBP, CSP, SNMP, PBAN, and OR. We analyzed the expression profiles of 7 selected genes involved in pheromone transport and degradation by quantitative real-time PCR; these genes are sex-specific and differentially expressed in the developmental stages. Overall, the comprehensive transcriptome resources described in this study could help understand and identify molecular targets particularly reproduction-related genes for developing effective P. rapae management tools.
    Matched MeSH terms: Larva/genetics; Lepidoptera/genetics*; Sex Attractants/genetics; RNA, Small Untranslated/genetics*
  3. Low DE, Tang MM, Surana U, Lee JY, Pramano ZAD, Leong KF
    Int J Dermatol, 2019 Oct;58(10):e190-e193.
    PMID: 31192449 DOI: 10.1111/ijd.14518
    Matched MeSH terms: Contracture/genetics; Hearing Loss, Sensorineural/genetics; Histiocytosis/genetics; Nucleoside Transport Proteins/genetics*
  4. Gheitasi R, Jourghasemi S, Pakzad I, Hosseinpour Sarmadi V, Samieipour Y, Sekawi Z, et al.
    Mol Biol Rep, 2019 Dec;46(6):6495-6500.
    PMID: 31595441 DOI: 10.1007/s11033-019-05095-w
    Brucellosis is the most common bacterial zoonotic infection. This pathogen may survive and sustain in host. The aim of this study is to define relationship between long noncoding (lnc) RNA-IFNG-AS1 and interferon gamma (IFN-γ) in different groups of patients with brucellosis compared to control group. In this study, associations of lncRNA IFNG-AS1 expression with secretion of IFN-γ level in Sixty patients with brucellosis, which were divided into 3 groups (acute, chronic and relapse groups), as a case group were compared with 20 subjects with negative serological tests and brucellosis clinical manifestation as a control group. In this regard, RNA were extracted from isolated peripheral blood mononuclear cells (PBMCs). LncRNA IFNG-AS1, T-box transcription factor (T-bet) and IFN-γ expressions were detected using quantitative polymerase chain reaction (qPCR). Serum level IFN-γ was assessed using enzyme linked immunosorbent assay (ELISA). The results showed that expression level of LncRNA IFNG-AS1, T-bet and IFN-γ increased significantly in all patient groups in compared to healthy subjects (P 
    Matched MeSH terms: Brucellosis/genetics*; Interferon-gamma/genetics; T-Box Domain Proteins/genetics; RNA, Long Noncoding/genetics*
  5. Teh BT, Hii SI, David R, Parameswaran V, Grimmond S, Walters MK, et al.
    Hum Genet, 1994 Nov;94(5):468-72.
    PMID: 7959678 DOI: 10.1007/bf00211009
    Multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disease characterized by neoplasia of the parathyroid glands, anterior pituitary and endocrine pancreas, is rarely reported in Asian populations. The MEN1 gene, mapped to chromosome 11q13 but yet to be cloned, has been found to be homogeneous in Caucasian populations through linkage analysis. Here, two previously unreported Asian kindreds with MEN1 are described; linkage analysis using microsatellite polymorphic markers in the MEN1 region was carried out. The first kindred, of Mongolian-Chinese origin, is a multigeneration family with over 150 living members, eight of whom are affected to date. The second kindred is of Chinese origin consisting of four affected members. Linkage to chromosome 11q13 was confirmed in both kindreds, supporting evidence for genetic homogeneity. A recombination in the larger kindred localizes the gene distal to marker D11S956, consistent with its placement from previous studies. We also show that it is feasible to use these markers for predictive testing, as four gene carriers were detected in 13 family members with unknown disease status in the first kindred.
    Matched MeSH terms: Carcinoid Tumor/genetics; Endocrine Gland Neoplasms/genetics*; Multiple Endocrine Neoplasia Type 1/genetics*; Asian Continental Ancestry Group/genetics*
  6. Ewart KM, Lightson AL, Sitam FT, Rovie-Ryan JJ, Mather N, McEwing R
    Forensic Sci Int Genet, 2020 01;44:102187.
    PMID: 31670244 DOI: 10.1016/j.fsigen.2019.102187
    The illegal ivory trade continues to drive elephant poaching. Large ivory seizures in Africa and Asia are still commonplace. Wildlife forensics is recognised as a key enforcement tool to combat this trade. However, the time and resources required to effectively test large ivory seizures is often prohibitive. This limits or delays testing, which may impede investigations and/or prosecutions. Typically, DNA analysis of an ivory seizure involves pairing and sorting the tusks, sampling the tusks, powdering the sample, decalcification, then DNA extraction. Here, we optimize the most time-consuming components of this process: sampling and decalcification. Firstly, using simulations, we demonstrate that tusks do not need to be paired to ensure an adequate number of unique elephants are sampled in a large seizure. Secondly, we determined that directly powdering the ivory using a Dremel drill with a high-speed cutter bit, instead of cutting the ivory with a circular saw and subsequently powdering the sample in liquid nitrogen with a freezer mill, produces comparable results. Finally, we optimized a rapid 2 -h decalcification protocol that produces comparable results to a standard 3-day protocol. We tested/optimised the protocols on 33 raw and worked ivory samples, and demonstrated their utility on a case study, successfully identifying 94% of samples taken from 123 tusks. Using these new rapid protocols, the entire sampling and DNA extraction process takes less than one day and requires less-expensive equipment. We expect that the implementation of these rapid protocols will promote more consistent and timely testing of ivory seizures suitable for enforcement action.
    Matched MeSH terms: DNA, Mitochondrial/genetics; Elephants/genetics*; Forensic Genetics/methods*
  7. Bhalla R, Narasimhan K, Swarup S
    Plant Cell Rep, 2005 Dec;24(10):562-71.
    PMID: 16220342
    A natural shift is taking place in the approaches being adopted by plant scientists in response to the accessibility of systems-based technology platforms. Metabolomics is one such field, which involves a comprehensive non-biased analysis of metabolites in a given cell at a specific time. This review briefly introduces the emerging field and a range of analytical techniques that are most useful in metabolomics when combined with computational approaches in data analyses. Using cases from Arabidopsis and other selected plant systems, this review highlights how information can be integrated from metabolomics and other functional genomics platforms to obtain a global picture of plant cellular responses. We discuss how metabolomics is enabling large-scale and parallel interrogation of cell states under different stages of development and defined environmental conditions to uncover novel interactions among various pathways. Finally, we discuss selected applications of metabolomics.
    Matched MeSH terms: Metabolism/genetics*; Plants/genetics*; Gene Expression Regulation, Plant/genetics; Genome, Plant/genetics
  8. Freeman MA, Ogawa K
    Int J Parasitol, 2010 Feb;40(2):255-64.
    PMID: 19715695 DOI: 10.1016/j.ijpara.2009.08.006
    Numerous global reports of the species Udonella caligorum, currently thought to be a species complex, suggests that the group may be species-rich. Herein we describe Udonella fugu n. sp., previously described as U. caligorum, found on the parasitic copepod Pseudocaligus fugu infecting Takifugu spp. from Japan. Using morphological data U. fugu can be distinguished from the current valid species by at least one of the traditionally used characters in udonellid taxonomy, and phylogenetic analyses of ssrDNA sequence data for U. fugu and other udonellids confirm that U. fugu forms a distinct clade from other udonellids including U. caligorum. Variable regions in the ssrDNA demonstrated a range of between 2.75 and 5.5% difference between currently recognized species of Udonella. These differences in ssrDNA sequences are phylogenetically useful when distinguishing between morphologically similar udonellids and can be used in conjunction with other data (morphology, phylogeography and fish host) to help clarify udonellid systematics. Udonella fugu was also found to cause significant damage to farmed tiger puffers through their feeding activities. Individual skin lesions were round in shape but merged with adjoining lesions to form more extensive lacerations. In some of the specimens from P. fugu infecting Takifugu niphobles, the protozoan ciliate Trichodina was found on the udonellid body surface and in their intestinal contents. We conclude that the udonellids are a more species-rich group than currently recognized, that early descriptions of new species may have been synonymized with U. caligorum in error and that the frequent global reports of U. caligorum may actually represent new species. This has led to a wide range of morphological descriptions for U. caligorum, blurring the usefulness of morphological data for the group.
    Matched MeSH terms: DNA, Ribosomal/genetics; Platyhelminths/genetics*; DNA, Helminth/genetics*; Ribosome Subunits, Small/genetics*
  9. Zain SM, Mohamed R, Mahadeva S, Cheah PL, Rampal S, Basu RC, et al.
    Hum Genet, 2012 Jul;131(7):1145-52.
    PMID: 22258181 DOI: 10.1007/s00439-012-1141-y
    The adiponutrin (PNPLA3) rs738409 polymorphism has been found to be associated with susceptibility to non-alcoholic fatty liver disease (NAFLD) in various cohorts. We further investigated the association of this polymorphism with non-alcoholic steatohepatitis (NASH) severity and with histological features of NAFLD. A total of 144 biopsy-proven NAFLD patients and 198 controls were genotyped for PNPLA3 gene polymorphism (rs738409 C>G). The biopsy specimens were histologically graded by a qualified pathologist. We observed an association of G allele with susceptibility to NAFLD in the pooled subjects (OR 2.34, 95% CI 1.69-3.24, p < 0.0001), and following stratification, in each of the three ethnic subgroups, namely Chinese, Indian and Malay (OR 1.94, 95% CI 1.12-3.37, p = 0.018; OR 3.51, 95% CI 1.69-7.26, p = 0.001 and OR 2.05, 95% CI 1.25-3.35, p = 0.005, respectively). The G allele is associated with susceptibility to NASH (OR 2.64, 95% CI 1.85-3.75, p < 0.0001), with NASH severity (OR 1.85, 95% CI 1.05-3.26, p = 0.035) and with presence of fibrosis (OR 1.95, 95% CI 1.17-3.26, p = 0.013) but not with simple steatosis nor with other histological parameters. Although the serum triglyceride level is significantly higher in NAFLD patients compared to controls, the G allele is associated with decreased level of triglycerides (p = 0.029) in the NAFLD patients. Overall, the rs738409 G allele is associated with severity of NASH and occurrence of fibrosis in patients with NAFLD.
    Matched MeSH terms: Fatty Liver/genetics*; Lipase/genetics*; Liver Cirrhosis/genetics; Membrane Proteins/genetics*
  10. Naim MA, Morillo JA, Sørensen SJ, Waleed AA, Smidt H, Sipkema D
    FEMS Microbiol Ecol, 2014 Nov;90(2):390-403.
    PMID: 25088929 DOI: 10.1111/1574-6941.12400
    The establishment of next-generation technology sequencing has deepened our knowledge of marine sponge-associated microbiota with the identification of at least 32 phyla of Bacteria and Archaea from a large number of sponge species. In this study, we assessed the diversity of the microbial communities hosted by three sympatric sponges living in a semi-enclosed North Sea environment using pyrosequencing of bacterial and archaeal 16S ribosomal RNA gene fragments. The three sponges harbor species-specific communities each dominated by a different class of Proteobacteria. An α-proteobacterial Rhodobacter-like phylotype was confirmed as the predominant symbiont of Halichondria panicea. The microbial communities of Haliclona xena and H. oculata are described for the first time in this study and are dominated by Gammaproteobacteria and Betaproteobacteria, respectively. Several common phylotypes belonging to Chlamydiae, TM6, Actinobacteria, and Betaproteobacteria were detected in all sponge samples. A number of phylotypes of the phylum Chlamydiae were present at an unprecedentedly high relative abundance of up to 14.4 ± 1.4% of the total reads, which suggests an important ecological role in North Sea sponges. These Chlamydiae-affiliated operational taxonomic units may represent novel lineages at least at the genus level as they are only 86-92% similar to known sequences.
    Matched MeSH terms: Archaea/genetics; Bacteria/genetics; DNA, Bacterial/genetics; RNA, Ribosomal, 16S/genetics
  11. Al-Marzooq F, Yusof MY, Tay ST
    Jpn J Infect Dis, 2013;66(6):555-7.
    PMID: 24270152
    Matched MeSH terms: Bacterial Proteins/genetics*; beta-Lactamases/genetics*; Klebsiella pneumoniae/genetics; Drug Resistance, Multiple, Bacterial/genetics
  12. Lau TP, Lian LH, Cheah PL, Looi LM, Roslani AC, Goh KL, et al.
    Eur J Cancer Prev, 2017 11;26(6):506-510.
    PMID: 28059856 DOI: 10.1097/CEJ.0000000000000336
    X-ray repair cross-complementing group 1 (XRCC1) is one of the key components in the base excision repair pathway that repairs erroneous DNA lesions and removes nonbulky base adducts for the maintenance of genome integrity. Studies have revealed that differences in individual DNA repair capacity can impact the interindividual variation in cancer susceptibility, tumour aggressiveness and treatment response. The relationship between XRCC1 and sporadic colorectal cancer (CRC) susceptibility, which is hitherto inconclusive, has been explored in many association studies of different populations. In view of the conflicting findings generated, we aimed to investigate the association between XRCC1 and genetic predisposition to CRC among Malaysians. The present case-control association study was conducted on 130 CRC patients and 212 age-matched healthy controls. The genotyping of XRCC1 Arg194Trp, Arg280His and Arg399Gln single nucleotide polymorphisms was performed with allele-specific real-time PCR approach. This was followed by basic statistical analysis on the single nucleotide polymorphisms and haplotype data obtained. No significant difference in the allele and genotype frequencies was observed between CRC patients and healthy controls (P>0.05). There was also no association observed between XRCC1 haplotypes and CRC (P>0.05). In conclusion, a positive association between XRCC1 gene polymorphisms and CRC risk was not established in our Malaysian population.
    Matched MeSH terms: Genetic Markers/genetics; Colorectal Neoplasms/genetics*; Genetic Predisposition to Disease/genetics*; Polymorphism, Single Nucleotide/genetics*
  13. Mahil SK, Twelves S, Farkas K, Setta-Kaffetzi N, Burden AD, Gach JE, et al.
    J Invest Dermatol, 2016 11;136(11):2251-2259.
    PMID: 27388993 DOI: 10.1016/j.jid.2016.06.618
    Prominent skin involvement is a defining characteristic of autoinflammatory disorders caused by abnormal IL-1 signaling. However, the pathways and cell types that drive cutaneous autoinflammatory features remain poorly understood. We sought to address this issue by investigating the pathogenesis of pustular psoriasis, a model of autoinflammatory disorders with predominant cutaneous manifestations. We specifically characterized the impact of mutations affecting AP1S3, a disease gene previously identified by our group and validated here in a newly ascertained patient resource. We first showed that AP1S3 expression is distinctively elevated in keratinocytes. Because AP1S3 encodes a protein implicated in autophagosome formation, we next investigated the effects of gene silencing on this pathway. We found that AP1S3 knockout disrupts keratinocyte autophagy, causing abnormal accumulation of p62, an adaptor protein mediating NF-κB activation. We showed that as a consequence, AP1S3-deficient cells up-regulate IL-1 signaling and overexpress IL-36α, a cytokine that is emerging as an important mediator of skin inflammation. These abnormal immune profiles were recapitulated by pharmacological inhibition of autophagy and verified in patient keratinocytes, where they were reversed by IL-36 blockade. These findings show that keratinocytes play a key role in skin autoinflammation and identify autophagy modulation of IL-36 signaling as a therapeutic target.
    Matched MeSH terms: DNA/genetics*; Interleukin-1/genetics; Psoriasis/genetics*; Adaptor Proteins, Signal Transducing/genetics*
  14. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al.
    Nat Genet, 2019 03;51(3):431-444.
    PMID: 30804558 DOI: 10.1038/s41588-019-0344-8
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.
    Matched MeSH terms: Autism Spectrum Disorder/genetics*; Genetic Predisposition to Disease/genetics*; Multifactorial Inheritance/genetics; Polymorphism, Single Nucleotide/genetics*
  15. Yeo FK, Wang Y, Vozabova T, Huneau C, Leroy P, Chalhoub B, et al.
    Theor Appl Genet, 2016 Feb;129(2):289-304.
    PMID: 26542283 DOI: 10.1007/s00122-015-2627-5
    Rphq2, a minor gene for partial resistance to Puccinia hordei , was physically mapped in a 188 kbp introgression with suppressed recombination between haplotypes of rphq2 and Rphq2 barley cultivars.
    Matched MeSH terms: Hordeum/genetics*; Plant Diseases/genetics*; DNA, Plant/genetics; Disease Resistance/genetics*
  16. Ramachandram S, Keng WT, Ariffin R, Ganesan V
    J Genet, 2013;92(2):313-6.
    PMID: 23970090
    Matched MeSH terms: Trisomy/genetics*; Turner Syndrome/genetics*; Chromosomes, Human, X/genetics; Sex Chromosome Disorders of Sex Development/genetics*
  17. Li L, Su Y, Li F, Wang Y, Ma Z, Li Z, et al.
    BMC Microbiol, 2020 03 24;20(1):65.
    PMID: 32209070 DOI: 10.1186/s12866-020-01754-2
    BACKGROUND: It has recently been reported that intermittent fasting shapes the gut microbiota to benefit health, but this effect may be influenced to the exact fasting protocols. The purpose of this study was to assess the effects of different daily fasting hours on shaping the gut microbiota in mice. Healthy C57BL/6 J male mice were subjected to 12, 16 or 20 h fasting per day for 1 month, and then fed ad libitum for an extended month. Gut microbiota was analyzed by 16S rRNA gene-based sequencing and food intake was recorded as well.

    RESULTS: We found that cumulative food intake was not changed in the group with 12 h daily fasting, but significantly decreased in the 16 and 20 h fasting groups. The composition of gut microbiota was altered by all these types of intermittent fasting. At genus level, 16 h fasting led to increased level of Akkermansia and decreased level of Alistipes, but these effects disappeared after the cessation of fasting. No taxonomic differences were identified in the other two groups.

    CONCLUSIONS: These data indicated that intermittent fasting shapes gut microbiota in healthy mice, and the length of daily fasting interval may influence the outcome of intermittent fasting.

    Matched MeSH terms: Bacteria/genetics; DNA, Bacterial/genetics; DNA, Ribosomal/genetics; RNA, Ribosomal, 16S/genetics*
  18. Psychiatric GWAS Consortium Bipolar Disorder Working Group
    Nat Genet, 2011 Sep 18;43(10):977-83.
    PMID: 21926972 DOI: 10.1038/ng.943
    We conducted a combined genome-wide association study (GWAS) of 7,481 individuals with bipolar disorder (cases) and 9,250 controls as part of the Psychiatric GWAS Consortium. Our replication study tested 34 SNPs in 4,496 independent cases with bipolar disorder and 42,422 independent controls and found that 18 of 34 SNPs had P < 0.05, with 31 of 34 SNPs having signals with the same direction of effect (P = 3.8 × 10(-7)). An analysis of all 11,974 bipolar disorder cases and 51,792 controls confirmed genome-wide significant evidence of association for CACNA1C and identified a new intronic variant in ODZ4. We identified a pathway comprised of subunits of calcium channels enriched in bipolar disorder association intervals. Finally, a combined GWAS analysis of schizophrenia and bipolar disorder yielded strong association evidence for SNPs in CACNA1C and in the region of NEK4-ITIH1-ITIH3-ITIH4. Our replication results imply that increasing sample sizes in bipolar disorder will confirm many additional loci.
    Matched MeSH terms: Bipolar Disorder/genetics*; Nuclear Proteins/genetics*; Schizophrenia/genetics; Calcium Channels, L-Type/genetics*
  19. Lee CC, Lin CY, Hsu HW, Yang CS
    Arch Virol, 2020 Nov;165(11):2715-2719.
    PMID: 32776255 DOI: 10.1007/s00705-020-04769-2
    We report two novel RNA viruses from yellow crazy ants, (Anoplolepis gracilipes) detected using next-generation sequencing. The complete genome sequences of the two viruses were 10,662 and 8,238 nucleotides in length, respectively, with both possessing two open reading frames with three conserved protein domains. The genome organization is characteristic of members of the genus Triatovirus in the family Dicistroviridae. The two novel viruses were tentatively named "Anoplolepis gracilipes virus 1" and "Anoplolepis gracilipes virus 2" (AgrV-1 and AgrV-2). Phylogenetic analyses based on amino acid sequences of the non-structural polyprotein (ORF1) suggest that the two viruses are triatovirus-like viruses. This is the first report on the discovery of novel triatovirus-like viruses in yellow crazy ants with a description of their genome structure (two ORFs and conserved domains of RNA helicase, RNA-dependent RNA polymerase, and capsid protein), complete sequences, and viral prevalence across the Asia-Pacific region.
    Matched MeSH terms: RNA Replicase/genetics; RNA, Viral/genetics; RNA Helicases/genetics; Capsid Proteins/genetics
  20. Al-Maleki AR, Vellasamy KM, Mariappan V, Venkatraman G, Tay ST, Vadivelu J
    Genomics, 2020 01;112(1):501-512.
    PMID: 30980902 DOI: 10.1016/j.ygeno.2019.04.002
    Differences in expression of potential virulence and survival genes were associated with B. pseudomallei colony morphology variants. Microarray was used to investigate B. pseudomallei transcriptome alterations among the wild type and small colony variant (SCV) pre- and post-exposed to A549 cells. SCV pre- and post-exposed have lower metabolic requirements and consume lesser energy than the wild type pre- and post-exposed to A549. However, both the wild type and SCV limit their metabolic activities post- infection of A549 cells and this is indicated by the down-regulation of genes implicated in the metabolism of amino acids, carbohydrate, lipid, and other amino acids. Many well-known virulence and survival factors, including T3SS, fimbriae, capsular polysaccharides and stress response were up-regulated in both the wild type and SCV pre- and post-exposed to A549 cells. Microarray analysis demonstrated essential differences in bacterial response associated with virulence and survival pre- and post-exposed to A549 cells.
    Matched MeSH terms: Stress, Physiological/genetics; Burkholderia pseudomallei/genetics*; Drug Resistance, Bacterial/genetics; Virulence Factors/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links